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Abstract 

 

By resolving the knife-edge condition in Solow’s neoclassical growth model as interpreted by 

Uzawa, in which a production technology with a non-unitary substitution elasticity is unable to 

accommodate capital-augmenting technical change, this paper offers a transformative approach 

to the analysis of economic growth and technical change.  With nature fixing the exogenous 

supplies of both capital and labor, consistent with the Law of the Conservation of Matter, 

investment in both physical and human capital becomes constrained to equal quantities of 

creation and destruction; that is, Hicks invention-neutral technical change creates new vintages 

that replace obsolete vintages of physical matter.   Contrasted with the Solow model in which the 

steady-state rate of growth is unaffected by the savings rate, in this model the exogenous savings 

rate drives every dimension of the Schumpeterian creative-destruction process – rates of 

innovation, depreciation, and investment.  Rising living standards result entirely from technology 

deepening; capital deepening becomes a misnomer.  The model is a literal implementation of 

Shumpeterian growth in which creation and destruction are precisely balanced in the steady state, 

driven by the warranted rates of savings, technology development, and investment.    The steady 

state is that in which savings, technical change, depreciation, and investment are aligned, so that 

creation and destruction are precisely balanced consistent with nature’s fixed endowment.     

 

 

*The author deeply appreciates the opportunity to have presented earlier versions of this work to 

colleagues at Brown Bag Seminar at Brandeis University, the University of Macao Department 

of Economics and the Schools of Economics at Fudan University and Peking University.   
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Su Jian, Dan Tortorice, and Anthony Yezer,   
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1.  Introduction 

 

A primary motivation for Solow’s formulation of his iconic neoclassical growth model 

was to resolve the knife-edge condition of the Harrod-Domar model for which the fixed 

proportions production technology created the prospect that vast and growing supplies of either 

unemployed labor or capital would emerge and persist as a by-product of long-run growth.  

Ironically, in solving the Harrod-Domar knife-edge problem, Solow created another knife-edge 

problem.  As a central feature of a model of “balanced growth,” the Solow model’s knife-edge 

condition is conceivably yet more serious than that of unemployment in the Harrod-Domar 

setting.  

A well-known implication of the conventional Solow-Uzawa interpretation of the 

neoclassical growth model is that once the economy’s production technology veers from a 

unitary elasticity of substitution, i.e., σ = 1, the steady state is unable to coexist with capital 

augmenting technical change.  As a result of this knife-edged condition, when σ ≠ 1, coincident 

with the technical capabilities of labor growing exponentially, the absence of improvements in 

the physical capital stock relegates humankind to a Stone Age populated by super humans.   

From the perspective of this paper, this troubling implication of the “workhorse model of 

macroeconomics” (Acemoglu, 2009, p. 26) results from its failure to broadly incorporate the role 

of capital in long-run growth.  As such, the Solow model (1956) is capable of degenerating to an 

“AL” model in which the growth of output per capita is simply gY – n = gy = gA, i.e., living 

standards are driven exclusively by gA, the rate of growth of purely labor-augmenting Harrod-

neutral technical change.
1
  With the growth of living standards virtually nothing more or less 

than the growth of labor efficiency enabled by a perfectly elastic supply of Stone-Age resources, 

the neoclassical model effectively obscures the real-world role of capital; in particular the roles 

                                                           
1
 We contrast this “AL model” with the well-known AK model in which constant returns to capital, reflecting the 

condition of constant returns to investment with capital’s output elasticity, α, = 1.  For the referenced AL model, 
the conventional  steady state gY = gA results for any value of α < 1.    
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of capital-specific technical change and technology deepening, as they operate on and through 

the process of economic growth.
2
 

As shown by Uzawa (1961), only when σ = 1, i.e., the production technology is Cobb-

Douglas, does the Solow-Uzawa model provide the conditions, so that either capital or labor-

augmenting technical change – or both – are able to sustain a steady state.  For circumstances in 

which σ ≠ 1, the presence of capital-augmenting technical change causes the income share of 

either capital (for σ<1) or labor (for σ>1) to degenerate to zero, thereby violating a basic tenet of 

steady-state growth.  This paper seeks to resolve this inconsistency between capital-augmenting 

technical change and balanced growth in the general case, irrespective of the economy’s capital-

labor substitution elasticity.       

To address the apparent impossibility of admitting both capital and labor-augmenting 

technical change with a non-unitary substitution elasticity, we reformulate the Solow model so 

that capital and labor are entirely symmetric.  With this arrangement, the treatment of physical 

capital and that of physical labor are identical; that is, given non-zero population growth, the 

physical supplies of both are exogenously fixed.  By acknowledging the fixed size of the 

physical world, so that investment exactly offsets depreciation, the only avenue for the balanced 

growth of the effective supplies of capital – and labor – is exogenous Hicks-neutral factor-

augmenting technical change.     

We demonstrate the set up for this approach both mathematically and through the lens of 

an isoquant scheme.  This approach also introduces the process of technology deepening as both 

a disembodied phenomenon, as in the case of the Solow model and as a process of embodiment 

through which new vintages of physical and human capital replace obsolesced vintages.  Within 

this model, technical change becomes inseparable from the rates of savings, investment, and 

depreciation, including the cost of innovation consistent with a Hicks-neutral steady state.  With 

exogenously-fixed factor inputs, living standards rise exclusively from technology deepening.  

Capital deepening with investment that alters the physical K-L ratio no longer exists.  The result 

is an extreme form of Schumpeterian creative destruction involving a 1-for-1 substitution of new 

vintages of capital for obsolete vintages.  The steady state in this model is achieved when rates of 

savings, innovation, depreciation, and investment are precisely balanced.   

                                                           
2
 Note that Solow’s assumption of a perfectly elastic supply of capital is analogous to the Harrod-Domar 

assumption of a perfectly elastic supply of labor.   
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With a non-unitary substitution elasticity, the introduction of non-zero population growth 

that alters the distribution of factor augmentation between the human form and its physical 

environment potentially alters factor-income shares.  The regularity of long-run real-world 

deviations  ≥ ε from fixed factor-income shares and a unitary substitution elasticity, may well 

render the conventional Solow-Uzawa steady state to be an unrealistic and theoretically 

untenable requirement for a model of long-run growth.  By voiding the possibility of factor 

augmenting technical change for all but physical labor under the special condition of a unitary 

substitution elasticity, the Solow model impairs our understanding of essential features of the 

long-run growth process. 

Contrary to the Solow model, the rate of savings in this model plays a central role in 

determining long-run growth.  By framing and integrating exogenous rates of savings for 

physical and human capital with endogenous innovation, depreciation, and investment outcomes, 

this model implies and requires a certain long-run consistency between savings rates and key 

dimensions of long-run growth.  By assuming fixed supplies of physical capital and labor, as 

determined by nature in all periods, rates of technology-induced investment and depreciation for 

both human and physical capital must be balanced.  As a literal interpretation of Schumpeterian 

growth, in the steady state, creativity and destruction – i.e., technical change, savings, investment, 

and depreciation – must be in perfect balance.   

The following section summarizes key efforts in the growth literature to interpret limits 

on and/or to expand the Solow model to incorporate capital-augmenting technical change.  

Section 3 reviews the structure of the Solow model under the dissimilar assumptions of Harrod 

labor-augmenting technical change and Hicks-neutral technical change.  Section 4 introduces an 

isoquant scheme that offers a helpful visual account that distinguishes between Stage I and Stage 

II of the growth process.  Section 5 demonstrates the functioning and limitations of the Solow 

model within a CES system.  Section 6 sets forth the basic assumptions and structure of the 

creative-destruction model, demonstrating how it functions with Hicks neutrality regardless of 

the economy’s substitution elasticity.  Section 7 addresses the issue of population growth, 

explores the implausible condition of the Solow steady state, and proposes an alternative 

understanding of balanced growth.   Section 8 defines and clarifies the determining role of the 

savings rate in the model.   Section 9 constructs a simple, heuristic model of endogenous growth 

consistent with the architecture of the model.  Section 10 examines various micro-foundations 
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that beg for clarification.  Finally, Section 11 sets forth conclusions and reflections, highlighting 

various contrasts and parallels with the Solow model.   

 

2. Literature Review 

 

In their attempt to make the seminal argument of Uzawa (1961) more transparent, Jones 

and Scrimgeour (2005) clarify the challenge of incorporating capital-augmenting technical 

change in the Solow model.  Because, with the exception of an exogenous rate of depreciation, 

the growth of the capital stock in the Solow-Uzawa growth model is entirely endogenous, as 

explained by Jones and Scrimgeour, capital “inherits” the exogenous growth of labor augmenting 

technical change.   Given the restriction that in the steady state, the effective supplies of capital 

and labor must grow at the same rates, once the capital side of the ledger has fully inherited 

labor’s augmenting technical change, with σ ≠ 1, space for capital-augmenting technical change 

to contribute independently to the growth of the capital stock disappears.   

We reference Jones and Scrimgeour’s (2005) condensed, transparent representation of the 

Uzawa Theorem in which Uzawa (1961) shows that in all situations but that of a unitary 

elasticity substitution, a steady state requires technical change to be of the purely labor-

augmenting variety.  Starting with a general-constant returns-to-scale production technology: 

 

Y = f(K,L,t)      (1a) 

 

Jones and Scrimgeour divide through by Y to obtain:    

 

    1 = f(K/Y, L/Y, t).       (1b) 

 

As Jones and Scrimegour explain, in order to maintain balance in the steady state, given 

that K/Y is fixed, when Y grows so that gY > n, L, the physical supply of labor, must be 

supplemented by labor-augmenting technical change, gA.  Hence, steady-state growth requires: 

 

                                                  1 = f(K/Y, AL/Y).       (1c) 
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With an exogenous rate of growth of the labor supply, i.e., n + gA, balanced growth 

requires the endogenously-determined capital stock to “inherit” gA and n thereby ensuring that 

dK/K = gK = n + gA, so that in the steady state the per capita growth of capital, gk = gK – n = gA = 

gy.  In this account, gk is entirely driven by gA, labor-augmenting technical change.  The 

inclusion of capital-augmenting technical change results in gk > gA, i.e., unbalanced growth such 

that the effective supply of capital exceeds the effective supply of labor.   We demonstrate using 

Fig. 2 in Section 5 why labor-augmenting technical change is uniquely equipped to achieve 

steady-state consistency when σ ≠ 1.  

This limitation requiring technical change to be purely labor-augmenting, thus severely 

restricting the possibility for technical change to augment the quality of capital, raises serious 

reservations regarding the assumption of the nature of technical change in long-run growth.  

According to Solow (2000, p. 31,32), “…it is possible to give theoretical reasons why 

technological progress might be forced to assume the particular form (“called labor-augmenting”) 

required for the existence of a steady state. They are excessively fancy reasons, not altogether 

believable.”  Acemogulu (2009, pp. 62) simply characterizes the assumption as “At some 

level…distressing.”   

This inability of the Solow-Uzawa model to accommodate capital-augment technical 

change when the capital-labor substitution elasticity is non-unitary has challenged decades of 

researchers to attempt novel approaches to address this difficulty.   Acemoglu (2003) analyzes an 

economy in which firms can undertake both labor- and capital-augmenting technological 

improvements. In the long run, the economy resembles the standard growth model with purely 

labor-augmenting technical change, with constant factor-income shares.  However, the steady 

state may be beset by exogenous events, such as tax policy or changes in labor-supply or savings 

that cause deviations from steady-state or profit-maximizing factor-income shares.   In the face 

of such deviations, consistent with Kennedy (1964) and Samuelson (1965), profit-maximizing 

firms may undertake investments in capital-augmenting technologies.  While such aberrant 

shocks and the ensuing capital-augmenting technology adjustments are unsustainable in the 

Solow steady state, the Solow model responds in ways that seek transition paths that lead back to 

the stable long-run steady state.   

Grossman, Helpman, Oberfield, and Samson (2017) look at the case in which σ < 1, so 

that, pursuant to capital-augmenting technical change, capital deepening depresses capital’s 
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factor-income share causing capital’s factor share to trend to zero, i.e., [α/(1-α)] → 0.   To 

compensate for this imbalance in which the growth of effective labor exceeds that of effective 

capital, Grossman et al introduce schooling, the demand for which responds to the growth of the 

capital stock.  That is, provided that schooling is more complementary with capital than with raw 

labor, i.e., ∂(FK/FL)/∂s > 0, schooling serves to augment the demand for capital.  With a precisely 

calibrated set of parameters that enable investments in schooling to offset the change in the 

capital share resulting from capital deepening when σ < 1, endogenous schooling is able to 

rebalance the rates of growth of effective labor and capital, consistent with the steady state in the 

presence of capital-augmenting technical change.     

Starting with the neoclassical growth model into which he incorporates adjustment costs 

of investment, Irmen (2013) extends Uzawa’s Theorem (1961) to allow for capital-augmenting 

technical change in the presence of steady-state adjustment costs.  As a result of adjustment costs 

of investment, units of current output earmarked for savings are consumed in the process of 

installing capital, so that capital deepening does not fully inherit the entirety of labor-augmenting 

technical change.  As explained by Irmen, by creating a gap between the evolution of gross 

capital investments and the capital stock, so that the former grows strictly faster than the latter in 

the steady-state, capital-augmenting technical change can enter to bridge the gap.
3
 

While each of these approaches pries open the door for the inclusion of capital-

augmenting technical change in long-runbalanced growth, the disadvantage of each is to 

compromise the straightforward intuition of the original Solow model.  Acemoglu’s model (2003) 

operates outside the Solow-Uzawa steady state, thereby avoiding a fundamental alteration of the 

model that would allow the model itself to incorporate and generate capital-augmenting technical 

change.  Grossman et al (2017) have the advantage of incorporating an essential factor – 

schooling – but do so under a limited set of restrictions that may themselves be more irregular 

than the assumption of a non-unitary substitution elasticity, which they are attempting to address.  

Finally, Irmen (2013) remedies an important shortcoming of the Solow model, which is the 

assumption that investment costs of adjustment are unrelated to the scale of investment as 

required for the essential Solow assumption of an infinitely elastic supply of capital.  While this 

is an important insight, as with Acemoglu and Grossman et al, Irmen’s innovation is more of a 

                                                           
3
Li (2016) shows that the essential condition for neoclassical model to have a steady-state growth path is that the 

rates of change in the marginal efficiency of capital accumulation (MECA) and the rate of capital-augmenting 
technical change (CATC) sum to  zero.   
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patch on the Solow model which falls short of enabling capital-augmenting technical change to 

play as prominent a role in the growth process as labor-augmenting technical change.  None of 

these initiatives creates the global space for critically-needed capital-augmenting technical 

change. 

Moreover, a common condition of all three approaches, one which severely compromises 

the intuitive, parsimonious attraction of the Solow model, is that each requires precise calibration 

of the newly introduced condition – optimal investment in capital-augmenting technical change, 

schooling, or adjustment costs – that entails specifying the optimizing behavior of a 

representative agent.  Writing in response to the proliferation of papers that seek to elaborate on 

long-run growth modeling, Solow (1994, p. 49) writes:  "Maybe I reveal myself merely as old-

fashioned, but I see no redeeming social value in using this construction (i.e., the 

intertemporally-optimizing representative agent).”  Arguably, it would be preferable to formulate 

a model that is able to accommodate capital-augmenting technical change in a way that is no less 

transparent and parsimonious than that achieved by Solow in 1956.
4
   

 

3. Solow – an overview 

 

To set the stage, we assume the tractable Cobb-Douglas production function with a 

unitary substitution elasticity (i.e., σ = 1).  We derive the equation for the growth of output per 

capita in the steady state, first assuming purely labor-augmenting Harrod-neutral technical 

change, then assuming factor-balanced Hicks-neutral technical change.   

The Harrod version.  Starting with the Harrod version of the Cobb-Douglas production 

function: 

 

   Y = K
α
(AL)

1-α
,      (2a) 

 

with Y = output, K = the capital stock, A = the labor-augmenting shift parameter, and L = 

population or the labor force, we convert Eq. (2a) to a rate-of-change version: 

 

gY = αgK + (1-α)(gA + gL).    (2b) 

                                                           
4
 The contributions of Acemoglu (1998) and Li and Bental (2016), are later referenced in Section 8.  
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Setting gL = n, the rate of population growth, subtracting n from both sides to equate gy = gY – n 

and gk = gK – n, and setting K/Y = V, as assumed by Solow in the steady-state, so that gk = gy + 

V^, where V^ = dV/V, we obtain: 

 

   gy = gA + [α/(1-α)]V^     (2c) 

 

In Eq. (2c), V is the standard Solow steady state condition, K/Y = s/(n + gA + δ), where δ is the 

rate of depreciation.   

The Hicks version. For the Hicks version, we start with: 

 

Y = (BK)
α
(AL)

1-α
       (3a) 

 

with B and A serving as technology shift parameters for both capital and labor.  Converting Eq. 

(3a) to rate-of-change form:  

  

gY = α(gB + gK) + (1-α)(gA + gL).    (3b) 

 

Again, converting to the per capita version, we obtain:  

 

                                              gy = α(gB + gk) + (1-α)gA.      (3c) 

 

Taking gB = gA = gH, adopting the steady-state restriction of a fixed capital-output ratio, K/Y = V, 

as with the Harrod version, and then solving for gy gives:  

 

                                    gy = [α/(1-α)]gH + gH + [α/(1-α)]V^                  (3d) 

 

for which we can combine the gH terms as: 

  

                        gy = [1/(1-α)]gH + [α/(1-α)]V^                     (3e) 
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In addition to the vertical shift in the production function equal to gH, by raising the marginal 

product of capital by gH, the ensuing capital deepening moves the economy along its production 

function, further elevating the growth of the capital stock by α/(1-α.   Again, as with the Harrod 

version, we assume a steady-state in which V^ = 0; we revisit the role of the steady state 

equation in Section 8. 

 The key difference between Eqs. (2c) and (3e) is the coefficients associated with the rates 

of technical change.  Jefferson (2017) refers to these as “technology multipliers” in which, as 

[1/(1-α)]gH, that for Hicks-neutral technical change is an increasing function of the output 

elasticity of capital, the economy’s endogenous factor, whereas for Harrod labor-augmenting 

technical change, the technology multiplier is unity irrespective of the relevant factor intensities.   

 

4. Solow Through the Lens of an Isoquant  

 

We introduce an isoquant diagram to elucidate the implications of the impacts of various 

forms of technical change.   Using Jones and Scrimgeour‘s Eq. (1b) above, we construct our 

isoquant, Y0 = 1, with K/Y and L/Y measured along the axes.  Initially, at (A0,y0), K = L = Y = 

A = 1.  Hence, the horizontal line at (K/Y)* = 1 represents a locus of points that is consistent 

with a Solow steady state.  Furthermore, the isoquant Yo,σ=1 is drawn so as to be consistent with a 

unitary substitution elasticity.   We demonstrate the isoquant analysis first using the Harrod 

assumption; then using the Hicks assumption. 

The Harrod version:  We initially use a simple numerical example to demonstrate the two 

stages associated with the Harrod transition from y0 to y1.  At A0, we allow for a one-time 

increase in labor-augmenting technical change; e.g., during the initial one-year period gA = 100%, 

represented in the steady state by the increase in income per capita shown at y1.  In order to 

simulate the two stages of the adjustment process, we set α, capital’s factor income share = 1/3.  

The isoquant Y0,σ=1 initially shifts from A0 to A1, representing two-thirds of the total increase in 

y, i.e., (1-α)gA = 66.7%.  With σ = 1, the shift in Y0,σ=1 from A0 to A1 leaves unchanged the 

relative marginal products of capital and labor, as well as the slope of the price line, i.e., p1  = p0, 

thus uniformly increasing the marginal products of both capital and labor by 66.7%.  This 

technology-augmenting impact of gA constitutes Stage I of the growth process; it establishes the 

pre-condition for Stage II. 
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At A1, the increase in income and savings per worker and the increase in capital’s 

marginal product motivate the Stage II capital deepening, equal to αgA, thereby moving the 

economy along the section of isoquant spanning A1 – y1.  At y1, the steady state, the efficiency 

increase relative to y0 results in a halving of the active supply of physical labor.  By substituting 

efficient labor for physical labor, the labor-augmenting technical change leaves the effective 

labor supply unchanged, so that at y1, K = AL = Y = 1 and Y/L = y1 = 2, a 100% gain.  At y1, 

with continuous labor-augmenting technical change, gy = gk = gA. 

 The Hicks version.  We now use the isoquant framework to examine the case of Hicks-

neutral technical change, which serves to augment the effective supplies of capital and labor 

equi-proportionately.  Unlike purely labor-augmenting technical change, which only shifts the 

Y0,σ=1 isoquant (1-α)gA to A1, as shown in Fig. 1, the equivalent increase in gH leads to a full 

factor-augmenting increase of gH = αgA + (1-α)gA, represented by the shift of Y0,σ=1, from A0 to 

A2.   

As with the case of purely labor-augmenting technical change, Eq. (3d) can be interpreted 

to represent two stages.  The first is the Stage I technology-deepening impact, i.e., gH, in which 

technical change directly augments the effective supplies of capital and labor equi-proportionally.   

Given that at A2, the marginal products rise equi-proportionately, the price line at A2 is parallel 

to that at A0., i.e., p2 = p0.  As with labor-augmenting technical change, Stage I creates the 

circumstances for the Stage II capital-deepening effect, i.e., [α/(1-α)]gH for the full impact of 

Hicks-neutral technical change, during which capital deepening drives the economy along Y0,σ=1, 

to the steady state y2.  With σ = 1, capital-deepening elevates the marginal product of labor by an 

equal amount thereby leaving the ratio of factor-income shares, wL/rK, unchanged.  As shown in 

Eq. (3e), for Hicks-neutral technical change the full technology multiplier is [1/(1-α)]gH , versus 

that of just unity for that associated with purely labor-augmenting technical change. 

 

5. Solow and CES 

 

The Uzawa restriction that requires σ = 1 for the inclusion of capital-augmenting 

technical change is best shown by taking a CES production function: 

 

Y =  F (K, L) = [π(BK)
(σ-1)/σ 

+ (1 - π)(AL)
(σ-1)/σ

]
σ/(σ−1)

 ,   (4a) 
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where π and (1-π) are normalized measures of the production technology’s capital and labor 

intensity.
5
  From Eq. (4a), we derive:  

 

FK/FL = [π/(1-π)][(B/A)
(σ-1)/σ

(K/L)
-1/σ

]    (4b) 

and 

SHKL = α/(1-α) = [π/(1-π)][(B/A)(K/L)]
(σ-1)/σ

.   (4c) 

 

Converting Eq. (4c) to a rate-of-change form gives:  

 

[α/(1-α)]^ = [(σ-1)/σ][(gB – gA) + gk],     (4d) 

 

Where gk = gK – gL.  Equation (4d) demonstrates the role of the unitary substitution elasticity in 

Uzawa’s Theorem.  If σ = 1, such that (σ-1)/σ = 0, the CES functional form imposes no 

restriction on the bias of factor-augmenting technical change.  Eq. (4d) also shows that for σ ≠ 1, 

by inheriting the contribution of gA, the growth of gK leaves no space for gB > 0.  Consistent with 

our distinction between Stage I and Stage II of the neoclassical growth process, we disaggregate 

Eq. (4d): 

  

Stage I: [α/(1-α)]^ = (σ–1/σ)(gA – gB) > 0    (4e) 

 

   Stage II: [α/(1-α)]^ = (σ–1/σ)gk  < 0      (4f) 

 

As shown by Eqs. (4e) and (4f), any deviation from a balancing of Stage I and Stage II 

results in a change in the capital-labor factor income share, thereby violating a fundamental 

condition of the steady state.  For the case of σ ≠ 1, the persistence of unequal, imbalanced 

growth of the effective supplies of capital and labor results in either SHKL → 0, for the case of σ 

< 1, or SHKL → ∞ for σ > 1.  We use Fig. 2 to demonstrate why with gB = 0, all values of gA > 0 

result in a sustainable Solow-Uzawa steady state.    

                                                           
5
 See León-Ledesma et al (2009) for a  discussion of the purpose of normalizing a CES function.  
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 In Fig. 2, the shift in Y0,σ<1 to B1 due to gA > 0 along the ray for which the factor 

demand K-L is fixed augments the effective supply of labor and the productivity of capital.  The 

increase in the effective supply of labor causes a spike in the rental price of capital, as shown at 

p1’, thereby causing α/(1-α) to increase to α’/(1-α’).   The increase in capital’s output elasticity, α, 

shifts the lower half of the isoquant Y0,σ<1 back along the K/L ray thereby reducing the 

contribution of gA relative to gk.  For Stage I, the contribution of gA is diminished from (1-α)gA 

to (1-α’)gA, i.e. from B0-B1 to B0-B1’ as σ transforms from 1 to < 1.
6
   

 By increasing α to α’ and thereby reducing the Stage I contribution of gA  as shown in Fig. 

2, the case of σ < 1 compensates by increasing the contribution of capital deepening from αgA to 

α’gA, thereby swinging the upper half of the Y0,σ<1 isoquant left, until the capital deepening 

causes it to become tangent with Y0,σ=1 at y1.  At y1, capital has fully “inherited” gA, thus 

restoring the steady-state K:Y ratio.  As shown by Eq. (4f), during Stage II, α/(1-α) decreases, so 

as to compensate for the previous shrinkage of labor’s factor-income share during Stage I as 

determined by Eq. (4e).     

 Eqs. (4d) summarizes the Stage I-Stage II adjustments shown in Fig. 2 associated with σ 

< 1 and factor-augmenting technical change.  Conditional on gB = 0, the analysis demonstrates 

that with gk = gA in the steady state, the Stage I and Stage II effects of technical change 

consistently balance so as to enable the Solow-Uzawa steady state. 

 We also use Fig. 2 to demonstrate the Hicks-neutral case with σ < 1 in which the isoquant 

Y0,σ<1 shifts from B0 to B2.  With Hicks-neutral technical change leaving the factor-augmenting 

ratio, A/B, unchanged at B2 and with the initial K/L ratio also unchanged, the Stage I technology 

deepening leaves the factor-income shares unchanged.  However, at B2, with the marginal 

product of capital rising, the Stage II capital deepening commences.  Along B2 – y2’, with K-L as 

net complements, the increase in capital’s effective supply results in dp/p > gK, so that [α/(1-α)]^ 

< 0.  In the absence of the initial Stage I having elevated capital’s factor income share, as it did 

with purely labor-augmenting technical change, the Stage II capital-deepening effect of Hicks-

neutral change drives the economy to y2’, where reductions in capital’s factor-income share 

persist.  In this situation, with on-going Hicks-neutral technical change and gk > 0, α/(1-α) → 0, 

thus defying a steady-state.  This account illustrates the dilemma of Hicks-neutral technical 

                                                           
6
 At K/L, the slope of the Cobb-Douglas isoquant is dK/dL = -[(1-α)/α]K/L; that is, for a fixed K:L ratio, as α increases, 

the isoquant flattens out.    
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change specifically and capital-augmenting technical change generally when the economy’s 

substitution elasticity is less than unity. 

 For the case in which σ > 1, we simply reverse the inequalities in Eqs. (4e) and (4f).  For 

the Hicks-neutral case, gA – gB = 0, as with all values of the substitution elasticity, the factor 

income shares are unchanged by the Stage I isoquant shift.  As shown by Stage II, for σ > 1 the 

Stage II capital deepening causes capital’s factor-income share to grow explosively, thereby 

violating the conditions of balanced growth. The key purpose of this section is to demonstrate the 

two distinct stages of the process of economic growth involving factor-augmenting technical 

change and capital deepening.  The Stage I-Stage II technology-deepening versus capital-

deepening distinction is essential for understanding the functioning of the creative-destruction 

model that we introduce in the next section.   

  

6. The fixed physical world.  

 

 How can the system accommodate capital- and labor-augmenting Hicks-neutral technical 

change while also subject to the condition σ ≠ 1?  We enable this with a fundamental change in 

the conception of technical change and capital deepening, founded on two critical assumptions:   

   

Assumption One:  Consistent with the Law of Conservation of Matter, the total supply or 

expanse of physical matter, i.e., nature’s endowment, whether embedded in the human form 

or its physical setting is fixed.   

 

The second assumption is:  

 

Assumption Two:  With n = 0, the sole source of growth of the effective supplies of capital 

and labor is through technology deepening resulting from Hicks-neutral technical change.   

 

Together these assumptions imply the following restrictions: first, consistent with Assumption 

Two, net investment, gK*, represents the embodiment of Stage I technology deepening, gH.  

Second, consistent with Assumption One, depreciation, δK, and replacement investment, gK’, 
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represent Stage II capital deepening, resulting in zero net physical capital deepening, i.e., gK” = 

gK’ - δK = 0. 

Assumption One, strictly speaking a straightforward description of our physical world, is 

transformative.  Rather than viewing our physical world as continuously expandable, let alone 

expandable with an infinite supply elasticity as assumed in the Solow model, in accord with the 

Law of Conservation of Matter this condition acknowledges the overall expanse of the physical 

world as fixed.  Hence, physical capital deepening no longer exists; the process of (net) 

investment it is more suitably characterized as technology deepening.   Regardless of whether 

embedded in the human form or in its physical setting, physical matter is assumed to be deeply 

malleable, so that the human and physical worlds can be continuously transformed through on-

going technological advance.   

Consistent with this assumption, the function of the so-called capital-deepening portion 

of the growth process, i.e., [α/(1-α)]gH in Eq. (3d) and Fig. 1, is simply to replace the depreciated 

or obsolesced capital stock with a physically equivalent amount of investment.  Given that the 

totality of physical matter is fixed and indestructible, what does it mean for physical capital to 

“depreciate” so as to require an exact replacement investment?  In our model, technology 

deepening investment includes two forms: i) creation investment consists of the resources used 

to invent and develop new ideas and technologies, including R&D expenses, and ii) replacement 

investment consists of the resources used to “destroy”, retire, and replace the physical capital 

whose net use value falls below that of new goods and services that come on line as a result of 

the innovation of gH, e.g., horse-drawn carriages resulting from the automobile; landlines 

resulting from the mobile phone.
7
   Technology deepening resulting in factor augmentation 

includes both the upgrading of physical matter that presently actively creates value added, and 

also such matter whose effective economic contribution has heretofore been zero, such as 

previously undiscovered energy resources whose economic value is transformed from zero to gH.  

Investment, assumed in the aggregate to exactly replace the depreciated, or lower-value physical 

capital, results in technology deepening that augments annually the economic value of the 

physical capital by gH.  Technical change sets the stage for the conversion and reconfiguration of 

the fixed supply of physical matter.  Although it is unlikely that Schumpeter conceived of his 

“creative destruction” metaphor in terms of an exact 1-for-1 balance between creativity and 

                                                           
7
 Hulton and Wykoff (1981) estimate that the largest portion of depreciation results from obsolescence.   
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destruction, we assume this balance, with further elaboration for human capital as explained later 

in this section.   

The step-by-step argument is set forth below.  However, a summary of the argument can 

be gleaned from the previous section.  In Fig. 2, regardless of the value of σ, the Stage I 

technology-deepening impact drives the economy to B2, where, as a result of the Hicks-neutral 

technical change, the marginal products of capital and labor rise equi-proportionately, thus 

leaving the relative marginal products unchanged at the original K:L ratio.  As described above, 

in the conventional Solow model, with σ ≠ 1, the resulting Stage II physical capital deepening, 

i.e., gK = [α/(1-α)]gH, causes the economy to migrate to the horizontal ray (K/Y)* = 1, exclusive 

of the unattainable steady state at y2.  Our innovation is that by interpreting gK’ = [α/(1-α)]gH = 

δK as representing equivalent amounts of both depreciation and replacement investment, net 

physical investment serves to replace old technologies with new technologies, thereby leaving 

the physical K:L ratio and balanced growth path unaltered as shown at B2 with its projection to 

y1.   

By depreciating or destroying the Stage II process resulting from factor-augmenting 

technical change, so that net physical investment = 0 and technology-deepening investment = gH,  

the effective supply of capital no longer “inherits” gA, rather it responds only to gB.  Nonetheless, 

given that gA = gB = gH, in the steady state gK = gA, as if the process of economic growth were 

driven by purely labor-augmenting technical change consistent with the general Solow-Uzawa 

steady state.  We describe this process of depreciation and technology deepening, including that 

for labor, more fully below and in Fig. 3.   

Setting V^ = 0 in the steady state, using Eqs. (3d) and (3e) and applying the steady-state 

constraint gK = gY, in which we accept Solow’s assumption that the supply of physical capital is 

perfectly elastic, we write gK as:  

 

gK = gH + [α/(1 ̵ α)]gH = [1/(1-α)]gH.      (5a) 

 

Again, 1/(1-α) represents the technology multiplier for gH, the measure of gross Hicks-neutral 

technical change, as it drives the growth of gross investment, gK, and gross output, gY.  As with 

the technology multiplier shown in Eq. (3d), the technology multiplier for gross investment 

consists of two sources of growth in the effective supply of capital.  The first, represented by gH, 



 

17 
 

is disembodied technical change that elevates the overall productivity and effective supply of the 

capital stock; the second source, represented by [α/(1 ̵ α)]gH, represents embodied technical 

change that materializes through physical capital deepening.   

 We represent these changes in Fig. 3, which incorporates several refinements relative to 

Figs. 1 and 2.  These are, first, that the fixed effective capital-output ratio is represented as 

(BK/Y)* = 1.  As explained below in the following sub-section, the counterpart fixed effective 

labor-output ratio is (AL/Y)* = 1, so that the relevant fixed K-L ratio is now transformed to 

BK/AL, i.e., the fixed effective factor ratio.  Throughout, in Fig. 3, B/Y and A/Y are fixed.  In 

the conventional Solow model, AL/Y and K/Y are fixed.  Here, AL/Y and BK/Y are fixed as 

shown in Fig. 3.   

Within this setting, the Stage 1 Hicks-neutral technical advance leaves the relative 

marginal products and factor-income shares unchanged at C1.  Thereafter, with our assumption 

of a fixed physical stock of capital, rather than the conventional Stage II capital deepening that 

transpires along C1 to y1 for the case of σ = 1 and along C1 to y1’ for the case of σ < 1, the 

economy transitions to y2.   At (BK/Y)*, the new technology advance, gH, has fully transformed 

the extant physcial capital stock.  Given our fundamental assumption that the physical supply of  

capital is fixed, capital deepening is exactly offset by an equivalent amount of depreciation, δK = 

[α/(1 ̵ α)]gH.  With the growth of physical capital, gK’ = [α/(1 ̵ α)]gH = 0, the net replacement 

effect, i.e., the effective net growth of capital, is gH.  In the Solow steady state, the relative 

physical marginal products of both capital and labor are unchanged.   

 Labor-augmenting technical change.  The above discussion describes a model in which 

we assume that the endogenous dynamic of capital-augmenting technical change resulting in 

balanced depreciation and replacement investment applies only to physical capital.  In fact, our 

assumption is that nature imposes fixed supplies on all physical matter, both physical and human, 

so that changes in either result only from exogenous non-zero population growth.  Absent 

exogenous population growth, we require that, as with the physical world, the augmentation of 

human capabilities be driven purely by technological change, not additive physical investment.  

As such, human capital enters our model synonymously with physical capital.   

With fixed adult cognitive capabilities, such that the supply per capita of the building 

blocks for human capital is fixed, the cognitive content of the human brain can be continuously 
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updated.
8
  As such, knowledge creation and memory entail rearrangements of existing neurons 

involving the creation of new synapses; this is the neuro-psychological phenomenon of Hicks-

invention-neutral human capital augmentation, i.e., gA = gH.  The entire spectrum of adult 

learning, ranging from introspection to frontier invention invokes the process of creative 

destruction in which new vintages of human capital investment replace obsolete or unused 

realms of understanding.   

Once the steady state is fixed for physical capital at y2, the elements of A, L, and Y are 

also fixed at y2 and k2, i.e., the horizontal projection from C1.  The yet-to-be-resolved issue is 

how to assess the impact of gA on the depreciation of human capital.  We do this through the 

following mental experiment.  Suppose that the physical human form were endogenous to 

technical change, i.e., either through population growth as in the Malthusian world or through an 

enlargement of individual cognitive capabilities, i.e., the brain.  This assumption would place 

labor and capital on the same platform, enabling the supplies of both to be perfectly elastic.  

Under this assumption, we can calculate how large a percentage of labor’s steady state physical 

growth must be destroyed, depreciated, or replaced consistent with humankind’s cognitive 

constraint.  ,  

As with physical capital, under the assumption of a perfectly elastic supply of human 

capability, in order to create the labor-equivalent to Eq. (5a), we set gL = gY and solve Eq. (3b) 

for gL: 

 

   gL = gB + [(1-α)/α]gA = (1/α)gH   (5b) 

 

Symmetric with Eq. (5a) that identifies the degree of physical capital deepening that 

needs to be replaced in order to accommodate new vintages of capital investment, i.e., [α/(1-

α)]gB, Eq. (5b) identifies the requisite portion of human capital deepening that is replaced in the 

process of human capital technology deepening, in order to sustain balanced growth.  That is, 

balanced growth is the condition in which the effective supplies of both the physical world and 

human capabilities grow, consistent with the constraint of the fixed expanse of the material 

world.   

                                                           
8
 See Herbert Simon’s work on bounded rationality.   
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 In Fig. 3, this total multiplier effect of labor-augmenting technical change with a 

perfectly elastic effective supply, i.e., (1/α)gA, is depicted along the vertical axis at k1.  The 

conditions of the model - fixed supplies of physical capital and physical-cognitive labor, Hicks-

neutral technical change, and offsetting physical quantities of depreciation and investment - 

establish the equilibrium at C1.   At C1, with the associated projections to y2 and k2, during Stage 

I, disembodied factor augmentation transpires purely through technology deepening.  With 

BK/AL fixed, such that the ratio of the effective factor supplies is fixed, the conventional Solow-

Uzawa steady state is satisfied irrespective of the magnitude of the economy’s capital-labor 

substitution elasticity.   

 Note that with this model that starts with the Law of Conservation of Matter and an 

exogenously fixed supply of physical capital, with a non-unitary substitution elasticity, purely 

labor-augmenting Harrod-neutral technical change is inconsistent with the Solow-Uzawa steady 

state.  The intuition behind this statement may well be the same that has caused disquiet for 

Solow, Acemoglu, Grossman and others seeking to innovate ways of accommodating capital-

augmenting technical change within the framework of the Solow model. 

  

7. Population growth vs. the “Black Hole” version 

 

In the previous sections, we assume that the rate of population growth, n, = 0.  Before 

directly examining the implications of non-zero population growth, causing the proportional 

distribution of nature’s fixed physical matter to redistribute between the human and physical 

worlds, we examine the “Black Hole” version of the model.  In this version, we eliminate the 

distinction between capital and labor, assuming a homogenous structure of physical matter, 

represented as Earth (E) and a single exogenous rate of technological advance (T).  With non-

zero population growth, the phenomenon of creative destruction remains consistent with nature’s 

overall endowment constraint.  This results in the most simple of functional forms, i.e.,  

 

Y = TE, 

 

in which the mass, volume, and numeric content of E includes the entirety of the physical matter 

embedded in both human and non-human form and T represents the technological advances that 
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emerge both from nature’s workshop and that of the human intellect.   Given the available 

estimates of 3.5 x 10
50 

for the number of atoms forming the Earth and with the total value of the 

Earth, including its population, estimated at $5.0 x 10
15

,
9
  the implied value per atom is $7.5 x 

10
-34

.  Two caveats are in order.  The first is that prior to 200,000 years ago when humans first 

appeared on the surface of the Earth,
10

 the assessed value of this collection of atoms was zero.  

Hence, the intrinsic value of the average atom has risen dramatically in a comparatively short 

time.  The second caveat is the fact that there exists substantial heterogeneity within the atomic 

structure of the Earth and its inhabitants.  For example, the most expensive elements include the 

following costs per gram: Plutonium ($4,000), Painite ($9,000), Taaffeite ($20,000), Tritium 

($30,000), Diamond ($55,000), Californium ($25-27 million) and Antimatter ($62.5 trillion).
11

  

The average annual income per gram of weight of the average American adult is 75 cents 

discounted to approximately $10 over a 40-year working lifetime.
12

   

Notwithstanding these differences, a logical extension of our model allows for it to be 

condensed to a homogeneous, one-sector account of global progress.  However, three conditions 

recommend that we separate the physical world and human condition into two distinct forms of 

factors of production.  The first is that the distinction provides the home for human capital; as 

such, it is one of the two essential loci of innovation: the human intelligence workshop, which 

complements nature’s innovation workshop as the driver of global innovation.  The second 

distinguishing feature of the human form is that in a human-centric universe, “man is the 

measure of all things.”
13

  As such, human convention dictates that the fruits of technical change, 

notably that of greater productivity and income, are measured on a per person or per worker 

basis.  Increases in living standards are the sine qua non of a meaningful growth model.  Finally, 

collapsing all matter into a single mass would come at the cost of obscuring the critical roles in 

the growth process of investment, depreciation, population growth, and, as outlined in the next 

section, for both physical and human capital savings.  Hence, we acknowledge population 

                                                           
9
 https://www.treehugger.com/natural-sciences/new-formula-values-earth-at-5000000000000000.html  

10
 http://www.bbc.co.uk/nature/history_of_the_earth  

11
https://www.google.com/search?q=how+much+is+an+atom+worth%3F&rlz=1C1GGRV_enUS753US753&oq=how

+much+is+an+atom+worth%3F&aqs=chrome..69i57j0l2.11290j0j8&sourceid=chrome&ie=UTF-
8#q=most+expensive+element+in+the+periodic+table 
12

 Using an annual discount rate of 3%.   
13

 A statement by the ancient Greek philosopher Protagoras. As long as humans are the sole source of measure 
and arbitration, humankind is the measure of all things.  Broadly defined, humankind’s objective function may 
incorporate intra- and inter-generational altruistic considerations.   

https://www.treehugger.com/natural-sciences/new-formula-values-earth-at-5000000000000000.html
http://www.bbc.co.uk/nature/history_of_the_earth
https://www.google.com/search?q=how+much+is+an+atom+worth%3F&rlz=1C1GGRV_enUS753US753&oq=how+much+is+an+atom+worth%3F&aqs=chrome..69i57j0l2.11290j0j8&sourceid=chrome&ie=UTF-8#q=most+expensive+element+in+the+periodic+table
https://www.google.com/search?q=how+much+is+an+atom+worth%3F&rlz=1C1GGRV_enUS753US753&oq=how+much+is+an+atom+worth%3F&aqs=chrome..69i57j0l2.11290j0j8&sourceid=chrome&ie=UTF-8#q=most+expensive+element+in+the+periodic+table
https://www.google.com/search?q=how+much+is+an+atom+worth%3F&rlz=1C1GGRV_enUS753US753&oq=how+much+is+an+atom+worth%3F&aqs=chrome..69i57j0l2.11290j0j8&sourceid=chrome&ie=UTF-8#q=most+expensive+element+in+the+periodic+table
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growth as a critical and distinct feature of the process of technology deepening and economic 

growth.   

In principle, population growth is constrained by the number of atoms in the world, either 

directly or indirectly, including those required of the physical environment to sustain and 

enhance life.  From the perspective of the distinction between physical and human capital, each 

individual represents the transformation of atoms from the physical capital side of the ledger to 

the human side of the ledger.  On Nature’s workbench, i.e., the process of evolution, this 

transformation transpired over millions of years.  Given that the approximate number of atoms in 

the world is 3.5 x 10
50

, while the approximate average for those residing in a single person is 7 x 

10
27

, with a current human population of approximately 7 billion persons, i.e., 7 x 10
9
, the 

world’s population accounts for about 5 x 10
37

 atoms.
14

  These magnitudes imply a physical 

capital-labor ratio of roughly 7 x 10
14

 atoms per person.    

 Relative to the aggregate, i.e., a figure of the order of magnitude of 10
50

, the human 

population accounts for just 7 x 10 
̵15

 of the total physical size of the world.  As a result, 

population change that alters the number of atoms embedded in the totality of humankind, 

represented in the  denominator of K/L, exercises a trivial impact on the numerator.  Hence, with 

population growth, the K-L ratio changes as L0e
-nt

 – the conventional measure of population 

growth.
15

   

Given that measured in terms of atoms, the ratio between those embedded in the physical 

and human worlds is of the magnitude 10
14

, it may seem implausible that the ratio of factor- 

income shares, α/(1 ̵ α),  should be so many orders of magnitude smaller.  Notwithstanding the 

examples of high-value physical matter cited above, this disparity reflects the far-greater value-

creating capacity of the matter embedded in the average human than an equivalent mass 

randomly drawn from the physical world.   

 With n > 0, σ ≠ 1, and with Hicks-neutral technical change, the increase in the effective 

supply of labor causes labor’s factor income share to be unstable, i.e., [α/(1-α)]^ ≠ 0.
16

  However, 

before conceding that our model deviates in some significant practical manner from the 

                                                           
14

 http://education.jlab.org/qa/mathatom_04.html  
15

 With the advent of space exploration, it is likely that the effective K:L ratio will be growing over time.   
16

 AK models with both physical and human capital generally assume n = 0.  However, as explained by Lebre de 
Freitas, http://sweet.ua.pt/afreitas/growthbook/Part%20I/mlfchap5.pdf , p. 17, it is possible to represent H as H = 
hL in which h is a quality-adjustment measure of H.  As a result, H is a measure of the quality-adjusted labor supply.  
For n ≠ 0, however, this measure of H is not consistent with the assumption of Hicks-neutral technical change.   

http://education.jlab.org/qa/mathatom_04.html
http://sweet.ua.pt/afreitas/growthbook/Part%20I/mlfchap5.pdf
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conventional Solow steady-state, we share the following two points, both of which draw on the 

empirical context of the hypothetical steady-state.  The first is that the Solow steady state 

depends on the stability of the steady state equation, i.e., K/Y = s/(n + g + δ).  A change in any 

one of these parameters voids the steady state as the model searches for its transition to a new 

steady state.  Also, by the time convergence to a new steady state has been achieved,
17

 simulated 

in the literature to span up to a generation, new shocks to s, n, g, and/or δ are certain to transpire.  

Arguably, given the conditionality of the stability of the four critical steady-state parameters, 

notwithstanding its laudable convergence properties, the Solow economy never achieves its 

heralded steady state. 

The second empirical issue is based on the research of Pritchett (1996), who uses a 

variety of data sets spanning substantial samples of OECD and developing economies to 

investigate the relationship between population growth and key macroeconomic conditions 

relating to long-run growth.  In his study, Pritchett finds no consistent pattern of a relationship 

between population growth and measures of capital per worker, years of schooling, or TFP, i.e., 

the per capita measures A/L and K/L appear to be unaffected by population growth.  Moreover, 

to the extent that population does affect macroeconomic outcomes, Pritchett concludes that the 

determining factor is the labor force structure rather than population growth per se.  Based on 

these results, Pritchett debunks the following “powerful intuition”: 

 

…if there is a fixed amount of stuff (land, capital, savings, water, budget for education, or 

whatever) then if there are more people to share the stuff, the average stuff per person must go 

down.  In the face of this compelling line of reasoning, the more ambiguous and tenuous 

theory based on endogenous behavioral responses to population pressures, and complicated 

econometric work never has a chance at persuasion. However, the evidence presented here 

suggests the basic premise is wrong: there is not a fixed amount of stuff. (p. 25) 

  

Our interpretation of Pritchett’s findings is that although there is a “fixed amount of (physical) 

stuff,” notwithstanding this physical fixity, changes in population, i.e., reallocations of the 

overall “stuff” between its physical and human forms, do not significantly affect the 

macroeconomic outcomes relevant to long-run growth.   

                                                           
17

 See “Intermediate Macroeconomics: Economic Growth and the Solow Model,” Eric Sims University of Notre 
Dame Fall 2012. 
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Perhaps the most instructive way to view the matter of increments and instabilities in 

nature’s physical K-L endowment is to explore again the implications of the disparity between 

the factor income share, α/(1-α), and the physical K-L ratio derived above of 10
14

.  This disparity 

indicates that the overwhelming vast portion of the magnitude difference in factor income share 

is due to the differential accumulations of human and physical capital, i.e. A and B.  That is A/L 

is vastly greater than B/K.  The overwhelming share of AL is embedded in human capital, not in 

unskilled, illiterate physical labor.
18

  In his finding that the structure of the labor force, not 

population growth, explains variations in the relevant macroeconomic variables, Pritchett is most 

likely identifying the deep structural and generational shifts that alter the stock of a nation’s 

human capital, not the annual count of the additions to a nation’s physical population.  

Notwithstanding the extreme conditionality of the Solow-Uzawa steady state, if indeed, given the 

divergent values of K and L, a one-time change in population growth persists for multiple 

generations, new steady state factor income shares will emerge.  Otherwise, the Solow-Uzawa 

“steady state” is always a work in progress.   

Given Prichett’s finding consistent with the intuition that the contribution of labor to 

production should be represented by labor force structure rather than the rate of population 

growth at a moment in time, we write gL as: 

 

                                t-20 

    gL = ∫(nt/45)      (6b) 

        
t-65 

 

That is, we cumulate annual rates of the 45-year lifespan of the active workforce.   

The key point of this section is that regardless of the role of population as it affects the 

ratio BK/AL, unlike the Solow model, our model does not rely on the assumption that the 

economy functions as a steady state mechanism defined by fixed factor income shares.  As 

shown in the following section, the steady state in our model requires consistency of the capital-

labor rates of savings with the prevailing rates of technical change, depreciation, and investment.  

                                                           
18

 Moreover if gA = gB = gH an A >> B, the it must be the case that the new born or new labor force entrant is vastly 
more valuable than the work in progress piece of physical capital, i.e., at some point their respective in-utero 
experiences leads to a starting gate that normalizes the speed and distance of the technology-deepening race 
course.   
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That is, our steady state requires that consistent with nature’s fixed endowment, technology 

deepening, creation, and destruction must be in plausible balance.   

 

8. Savings in the steady state 

 

Explicit implications for physical and economic savings behavior arise from this model.  

We start with the following capital-augmenting equation of motion:  

 

d(BK)t+1 = sKYt – δK(BK)t + gB(BK)t    (8a) 

 

In the steady state, dividing through by BKt yields:  

 

d(BK)/(BK) = gK* = gB  + gK” = sK[Y/(BK)]t – δK + gB, (8b) 

 

where gK* = net investment, and gK” represents net physical replacement investment, i.e., 

replacement investment less depreciation, such that gK” = gK’ - δK = 0.  Hence gross investment 

gK = gB + gK’. 

Eq. (8b) can be adapted to represent two distinct versions of the steady state: one in 

which technical change is disembodied; the other in which technical change is embodied in new 

investment.   For the case of disembodied technical change, gB, representing exogenous 

technology deepening, survives on the right-hand side of Eq. (8b).  The resulting steady state is 

consistent with the growth paths as represented by A2, B2, and C1 in Figs. 1, 2, and 3 respectively 

in which the technical change transpires in disembodied form in Stage I.  Incorporating these 

restrictions and substituting δK =[α/(1-α)]gB; then solving for the replacement savings rate,  sK’, 

yields: 

 

gK”= sK’[Y/(BK)]t – δK = sK’[Y/(BK)]t – [α.(1-α)]gB = 0  (8c) 

so that 

   sK’ = [α/(1-α)]gB(BK/Y).        (8d) 
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In Eq. (8d), sK’ is the rate of savings required to exactly replace the depreciated physical capital 

so as to establish the steady state at y2 in Fig. 3.  This outcome assumes that new investment 

conveys none of the new vintages of technology, that is, all of the depreciated capital is replaced 

with technology-equivalent investment, so that the entirety of gB is absorbed through 

disembodied means that transpire through Stage I.    

 The alternative scenario is that of embodied technical change.  Under this scenario, the 

gross rate of savings, sK, is required to replace the depreciated stock of physical capital while 

also financing the purchase of the new vintages whose economic values have risen by gB.  For 

the purpose of representing the savings rate consistent with full embodiment, gB drops from the 

right hand side of Eq. (8a), so that rather than materializing costlessly, technical change 

transpires through the saving process.  Hence with capital augmenting technical change, so that 

in the steady state gB transpires through the investment process, we amend Eq. (8b) as: 

 

gB = sK(Y/BK)t – δK                      (8e) 

 

Again setting δK = [α/(1-α)]gB, substituting into Eq. (8e), and solving for sK yields: 

 

sK = [1/(1-α)]gB(BK/Y)          (8f) 

 

The counterpart net rate of savings is: 

 

    sK* = gB(BK/Y).           (8g) 

 

Note that whether technical change is embodied as in Eq. (8g) or disembodied as in Eq. (8d), gY 

= gH = gB as shown at y2 in Fig. 3.   

 Given that in the steady state gY = gB = gH, for the standard Solow steady state with 

Hicks-neutral technical change and letting v = (BK/Y) represent the economy’s capital intensity, 

we can rewrite Eq. (8g) as sK* = gY/v or gY = sK*/v.   While having arrived at this result through 

very different means, the structure of Eq. (8g) is identical to those of Harrod’s specification of 

long-run growth (1961) and Piketty’s “second fundamental law of capitalism” ( 2015).  
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Ironically, as shown in Annex II, these results were arrived at through a model that can be 

interpreted as an amended version of the Solow model. 

Drawing on the analysis for human capital in the previous section, the derivation of the 

warranted rates of human capital savings is similar to those just derived for physical capital.  For 

the Stage I disembodied scenario, the implied human capital savings rate is:  

 

sL’ = [(1-α)/α)]gA(AL/Y)        (8h) 

 

whereas that for the implied gross rate of savings required to embody the technical change in 

new vintages of human capital is: 

 

sL = [(1/α)]gA(AL/Y)          (8i) 

 

and that for the net rate of human capital savings is: 

 

sL* = gA(AL/Y).         (8j) 

 

We note that regardless of whether technical change exclusively transpires as disembodied 

change in Stage I or it materializes as embodied in Stage II, the result is the same Solow steady 

state outcome in which gY =gB = gA = gH, i.e., capital and labor factor augmentation are balanced 

resulting in balanced growth. 

As Eqs. (8d) and (8g) both show, the more technology- and capital-intensive the 

economy, i.e., the greater BK/Y, the large the requisite savings rate for physical capital.  As an 

example, we take the historic 3% rate of growth of the U.S. economy as a proxy for gH and 

designate the BK/Y ratio as 3 and capital’s income share as one-third.  Using Eq. (8d), to 

compute the rates of depreciation and replacement investment yields a rate of 4.5%.  For gross 

savings, Eq. (8f) yields a rate of 13.5%.  These results imply a ratio of gross to net savings of two 

thirds. 

Based on Eqs. (8d) and (8g), we are also able to compute the net rate of savings for 

physical capital as sK* = gB(BK/Y).  Similarly, Eqs. (8j) infers a net rate of savings for human 
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capital as sL* = gA(AL/Y).  That is, our model indicates that the net rate of savings for physical 

capital savings, sK* = (1-α)sK, whereas the net rate of savings for human capital, sL* = αsL.  

Eqs. (8i) – (8j) imply rates of savings that are warranted by the rates of depreciation, 

investment, and technical advance of human capital that may seem surprisingly high.  For the 

U.S., using Eq. (8g) and taking the historic 3% rate of growth as a proxy for capital-augmenting 

Hicks-neutral technical change, setting AL/Y, an estimate of the total labor-output ratio, equal to 

6, and setting human capital’s income share at two-thirds implies seemingly improbable savings 

rates for human capital of 36% and 54%, yielding a gross- to replacement savings ratio two-

thirds larger than that for physical capital.   The implied net rates of savings for physical and 

human capital are 9% and 18% respectively.     

 Against the background of our creative-destruction model, comparisons of the savings 

rates that are implied by our model and those represented in U.S. national income accounts are 

neither comparable nor complete.  The NIA do not attempt estimates for savings and 

depreciation for human capital in the U.S. economy.  Moreover, to the extent that the NIA 

includes R&D expenditure in its accounts, these are recorded as savings and investment for 

physical capital, whereas such expenditures are also substantially labor-augmenting as 

represented by gA.   

A 2007 OECD report indicates that in the OECD countries, approximately 54% of 

savings is dedicated to human capital investment.
19

  Hence, even using accounting methods that 

reflect existing accounting conventions, the results implied by our model are consistent with the 

established empirical estimates that suggest that rates of savings for human capital exceed those 

for physical capital.  The empirical implementation of this model clearly requires a fresh look at 

national income accounting standards in the U.S. and other countries.  Our model, for example, 

forces consideration that three meals a day and the time spent reading this paper qualify 

respectively as embodied replacement human capital and technology deepening.     

Given that for the U.S. the estimated ratio of AL/BK is 2:1, the fact that the estimated 

ratio of output elasticities is α/(1-α), i.e., 1:2 implies a virtual equalization of marginal products: 

α(Y/BK) ~ (1-α)(Y/AL).  Hence, gross savings rates in the 4:1 labor-capital ratio are consistent 

with a steady state that tends to equalize returns to investment in physical and human capital.   A 

                                                           
19

 https://www.oecd.org/insights/humancapitalhowwhatyouknowshapesyourlife.htm  

https://www.oecd.org/insights/humancapitalhowwhatyouknowshapesyourlife.htm
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key implication of this result is that by omitting technology deepening for both physical and 

human capital, the Solow model misses the critical dynamic force driving long-run growth.   

Whereas in the Solow model, in the absence of capital-augmenting technical change, 

either physical or human, technical change is necessarily disembodied, our model enables a clear 

distinction between embodied and disembodied technical change, as well as the requisite savings 

rates associated with each.  In this analysis in which physical and human technology deepening 

are the sole vehicles for long-run economic growth, we assume that technology must be 

embodied in labor, capital, or both in order to affect the economy.  Blueprints, patents, and 

journal articles may reside on line or in the archives, but in order to contribute to economic 

growth, their essence must be embodied within an active factor of production.  In fact, each of 

these so-called “disembodied” forms of technology all emerged from various forms of 

knowledge and technology embodied in persons, machines, and nature.  In the following section, 

we examine the role of endogenous technical change in our model.   

 

9.  Endogenizing technology deepening and growth 

 

  For every gH, there are unique steady-state savings rates that fulfill three conditions: 

allocate the resources for the creation of gH, induce depreciation, broadly defined, and finance 

the replacement investment necessary to enable the potential for technology deepening to fully 

materialize.   Given these functions of savings, we are able to use our model to endogenize gH, 

the rate of technical change and steady-state output growth.  As such, we seek to derive and 

analyze the relationship gH = βs, in which the rates of savings for physical capital, sK, and human 

capital, sL, drive Hicks-neutral technical change.   

In Section 8, we derived the net steady-state savings rate for embodied physical capital, 

sK*, as (BK/Y)gB.  Given a fixed value for BK/Y, we infer a fixed relationship between sK and gB, 

i.e., that portion of physical savings that impacts directly on the non-human physical capital 

stock.  As such, we have implicitly derived an equation for gB in terms of the savings rate and the 

average product of physical capital:    

 

gB = (Y/BK)sK*.     (9a) 
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There exists a counterpart relationship for human capital technical change and the human capital 

net rate of savings: 

 

    gA = (Y/AL)sL*.     (9b) 

   

We use Eqs. (9a) and (9b) to construct Fig. 3, which shows the linear relationship between rates 

of savings and technical change.  Using gB = gA = gH = gY, we construct Fig. 3 as shown for 

which we calibrate ∂gY/∂s*, the slopes of the savings functions, from the statistical estimates of 

the last section, i.e., those for gH, sK*, and sL* for the U.S. economy.   

As shown in Fig. 4, calibrated using approximations of U.S. data, rates of technical 

change and output growth are positive functions of both rates of savings and the average 

products of physical and human capital.  As calibrated, the linearity of the relationships, implies 

that a 3% increase in the rate of physical savings coupled with a 6% increase in the rate of 

savings for human capital results in a one percent increase in the rates of growth of technical 

change and output.  The interested reader may wish to reaffirm or recalibrate the relationship 

shown in Fig. 4 using data for other countries.   

One potentially unsettling implication of the diagram shown in Fig. 4 is the strictly linear 

relationship between rates of savings, technical change, and economic growth.  The linear 

relationship implies that a golden-rule-driven society might wish to dedicate far larger shares of 

its income to savings than presently observable.  The linearity results from a core assumption of 

the model, i.e., constant returns to scale in both the short-run and the long-run, both between and  

within countries.   

Our analysis assumes that as a fraction of total savings, the resources dedicated to 

innovation, i.e., Ri, i = K, L, represent fixed proportions, i.e., RK/SK = vK and RL/SL = vL.  That is, 

increases in sK* and sL* result in equi-proportional increases in gB, gA, and gH. These 

relationships persist regardless of the level of development of the affected countries, i.e. their 

physical and human capital intensities and proximities to the international technology frontier.  

In fact, analyses and findings, such as those of Jones and Williams (2000, p. 65) and Coccia 

(2009, p. 433), strongly suggest diminishing returns to R&D activity.  Regardless of the precise 

specification between the savings, innovation expenditures, and innovation outcomes, this model 

provides a heuristic context within which to nest the vast expanse of endogenous growth 
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literature,  including Aghion and Howitt (1992), Jones and Vollrath (2013) and a variety of the 

models reviewed by Sveikauskas (2007) and Hall (2009). 

 

10. Interpretation and microeconomic foundations 

 

Several cornerstones of this paper invite deeper analysis; in some cases clarification of 

the implied micro-foundations.  These include the justification for the assumption of Hicks-

neutral technical change, the distinction between disembodied and embodied technical change, 

and the microeconomic underpinnings of the Schumpeterian creative destruction process.   

Independent of the requisite limitations on the nature of technical change in the Solow-

Uzawa neoclassical growth model, a large literature has evolved addressing the likely bias of 

technical change.  We do not presume to add to the formal analysis contributed by Kennedy 

(1964) and Samuelson (1965, Hicks-neutral), Acemoglu (1998, skill-biased), and others.  Rather, 

we simply attempt to augment the argument on behalf of Hick-neutral technical change from the 

perspective of this paper.   

A useful starting point is the observation of Hicks in his correspondence with Harrod 

(1999, p. 349):    

 

Your theory, as I now see it, is a long-period theory where (in equilibrium) the supply of 

capital (i.e. the stock of capital) is not an independent but a dependent variable, adjusting 

itself to the other data of the system, such as the rate of growth.  In such a system a definition 

of “invention neutrality” such as mine is not possible; one has to have a definition of the same 

type as yours, into which the stock of capital does not explicitly enter.  Basically this is 

because in your system it is the same equilibrium when capital has doubled and everything 

else has doubled, as it was before….” 
20

  

 

What is most telling in this paragraph is the perspective that Hicks and Harrod-neutral technical 

change are not competing substitutes; instead, Hicks offers the possibility that the two 

interpretations of technical change can be viewed as sequential and complementary.  As such, 

Hicks’ definition of technical change is analogous to our Stage I phase in which technical change 

is measured in relation to a given K-L ratio.  From this perspective, Hicks’ invention-neutral 

technical change is entirely disembodied; that is, it augments efficiency given the existing 
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 Hicks to Harrod, 30 January 1963, see also Hicks 1963, pp. 348-350, reproduced in Besomi, 1999.   
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physical inputs and factor intensities.  By contrast, Hicks characterizes Harrod-neutrality as that 

in which capital – being an endogenous factor – has adjusted so that “capital has doubled and 

everything else has doubled.”  Hence, Hicks relates the Harrod-neutral portion of the technical 

change to our Stage II phase characterized by the investment process.  Our innovation is to 

constrain the possibility of uneven outcomes of Hicks-neutral technical change in the Solow 

model, so that all of the factor-augmenting inputs uniformly double.   

What requires technical advance to be roughly balanced as between humankind and the 

physical world?  From the Pyramids, to the steam engine, to computing and space travel, the 

processes of transformation of the physical environment and the human brain have been 

inseparable.   Everything in our material world that results from innovation, conventionally 

understood as emerging from human intelligence, transits through the human brain; likewise, all 

such innovation for the human body, including medical interventions and education, transit 

through the workshops of nature and the physical world, rendering the Stage I innovation 

workshops of nature and the human intellect inseparable.   

In their paper “What Determines the Direction of Technological Progress?,” Li and 

Bental (2016) conclude that  “…in the long-run the direction (of technical change) depends only 

on the relative supply elasticities of primary factors with respect to their respective prices.”  This 

condition, according to Li and Bental, account for the fact that in the Solow model in which the 

physical labor supply is entirely inelastic while physical capital is infinitely elastic, with the 

exception of the special condition σ = 1, technical change is restricted to being purely labor 

augmenting.  An implication of the Li-Bental model is that with the physical supplies of capital 

and labor, both being entirely inelastic with respect to their respective prices, such as required in 

our model in which physical supplies are restricted by nature’s fixed endowment, capital and 

labor factor-augmenting technical change must be uniform and Hicks-neutral.     

 A second issue concerns the heterogeneous distribution of physical and human 

technology.  A serious issue facing the model crafted above is its homogeneous nature.  That is, 

in the Black Hole single-sector model, technical change sweeps uniformly over the entire domain 

of the physical world, rendering its entirety uniformly obsolete in some measure sufficient to 

warrant its replacement with new vintages of technology yielding a single uniform efficiency 

increase equal to gH.     



 

32 
 

 In fact, the structure of the physical and cognitive worlds exists along a highly 

heterogeneous distribution of knowledge and technology vintages.  We imagine a production 

efficiency distribution, which drifts through the time dimension as new technologies appear at 

the right-hand side of the distribution replacing old technologies disappearing from the left-hand 

tail of the distribution.   

By introducing the “replacement effect,” in which competing entrants are incentivized to 

develop innovations that chase the profits of incumbent monopolists who are themselves inclined 

to dedicate fewer of their own resources to innovations that displace their already-established 

markets,” Arrow (1962) likely laid the conceptual foundation for formally modeling 

Schumpeter’s creative-destruction paradigm.
21

  From the perspective of this model, whereas the 

successful competing entrant is poised to capture the full [(1/1-α)]gH from the physical 

innovation in question, the incumbent suffers the loss of δH resulting from the technology 

displacing effect of the innovation.    

In his Chapter 14, “Models of Schumpeterian Growth,” Acemoglu (2009) deftly 

summarizes the large literature on Schumpeterian growth models, including those of Aghion and 

Howitt (1992) and  Grossman and Helpman (1991).   His “Baseline Model of Schumpeterian 

Growth” (p. 459) represents a synthetic model in which there is a continuum of machines used in 

the production of a unique final good.  With a fixed number of machine varieties, the measure of 

machine efficiency can be normalized, so that the efficiency of each machine line can be denoted 

by ν ϵ [0,1].  The driver of economic growth, gH, leads to technical advance that enables the 

economy to ascend a “quality ladder” as new rungs emerge from the innovation process 

motivating the investment required to replace lower rungs.  Within our model, each rung 

represents a fixed amount of matter, so that the replacement process involves new capital 

replacing old capital in equal quantities by moving the lower quality rungs to higher quality 

rungs of equal mass.  Again, our model provides a comprehensive, heuristic setting for a range of 

models of creative destruction. 
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 Schumpeter, 1942.  
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11. Conclusion and Reflections 

 

By enabling technical change in the steady state to be of the Hick-neutral variety, the 

model in this paper turns the conventional Solow-Uzawa model on its head.  The size of the 

physical world remains fixed as measured in physical units; the effective supplies of capital and 

labor grow only through interlocking and equi-proportional advances in capital and labor-

augmenting technology, thereby creating balanced growth.  In order to sustain the steady-state, 

the annual rates of physical and human capital saving and investment exactly replace the 

depreciated physical and human capital stock, further creating and accommodating annual 

increments to technological advance, gH.   The one-for-one process of creative destruction 

underscores the centrality of technology deepening as the core driver of balanced depreciation 

and efficiency-enhancing replacement investment.  The model developed in this paper 

underscores the importance of knowledge creation; the challenge is how to understand and 

coordinate the interaction of nature’s innovation workshop and the humankind’s innovation 

workshop in service to humankind’s objective functions and optimizing behavior, given  the 

constraints of nature’s fixed endowment.  

By establishing savings rates as the exogenous policy vehicle for framing the innovation 

that drives destructive depreciation and creative investment, the model overturns the Solow 

model in which the savings rate is also exogenous but entirely passive as a driver of steady-state 

growth.  Given the interdependence of savings and investment, the model sets a context for 

nesting the rich field of endogenous growth theory.   

The model bushes up against several key public policy implications.  The central public 

policy issue that emerges from the model is the determination of the optimal rates of savings and 

innovation investment.  While certain literature, including Nuno (2010) in a general equilibrium 

context, Jones and Williams (2000) within an endogenous growth model, and Scotchmer (2004) 

within the context of optimal patent design, explores this issue, the thrust of this model suggests 

that the issue of socially optimal levels of physical and human capital savings should be far more 

extensively addressed and debated than evidence by the existing literature.   

A second public policy issue arising from this model is the intrinsic link between creation, 

associated with innovation, and destruction or depreciation resulting from the same innovation.  

By centering the model on the creation-destruction nexus, the model engages with the public 
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discourse on the consequences of trade and technical change for winners and losers with 

implications for public policy. While the model underscores the critical role of savings, it also 

underscores the negative externality that arise from the essential destruction and displacement 

that results from technology deepening.  The inextricable link between creation and destruction 

invites deeper attention to the role of institutions and institutional economics in enabling the 

central economic condition of technology-deepening to achieve real-world Pareto-improving 

outcomes.   

A final issue, one that bedevils the Solow model, is an issue that this model does not 

readily address; that is, an explanation of the dramatic difference among countries in living 

standards.  The model does contain elements that imply catch-up.  By inferring the multiplicative 

steady-state savings equations – sK = gH(BK/Y) and sL = gH(AL/Y) – the model suggests that for 

given rates of physical and human capital savings and investment, countries with low capital 

intensities – and high marginal productivities – should be able to achieve higher levels of 

technological advance.  In this sense, by generating higher intensities of physical and human 

capital, the process of development results in a decline in the Beta-coefficients that mediate 

between savings, technology deepening, and growth.
22

  That is, growth includes the seeds of 

slowdown. 

And yet, by bundling the rates of technical change, depreciation, investment, and savings 

rates together, this model further diminishes the role of savings as the candidate explanation of 

cross-country income differences.  Having demonstrated that differences in savings rates fall far 

short of explaining income differences among rich and poor countries, Romer (1994) bounds the 

role of saving as the principal factor determining persistent differences in long-run rates of 

growth.  In our model, the other candidate explanation of persistent income differences is either 

physical resource endowments, K and/or L, and/or differences in original technology and 

institutional endowments, embedded in B and/or A, which together also enter into the Beta-

factor that intermediates between savings and innovation.
23

  The recognition that original 

                                                           
22

 The relationships BK/Y = sK*/gY and AL/Y = sL*/gY also imply Piketty’s “second fundamental law of capitalism” 
(2015), i.e., if rates of output growth fall over time and savings rates (for physical capital) remain fixed, capital 
intensity – and unequal income distribution – increase.  Piketty may also wish to extend his “fundamental law” to 
human capital.   
23

 This literature, for example, includes Barro and Sali-i-Martin (1995) who identify heterogeneous policies toward 
intellectual property as a source of divergent rates of cross-country economic performance.   



 

35 
 

resource endowments matter have led to a variety of methodological innovations in the applied 

development and growth literature.
24

   

Solow appears to have been inspired to formulate his neoclassical growth model in 

response to the Harrod-Domar condition that Solow characterized as follows (1956, p. 65): 

 

The characteristic and powerful conclusion of the Harrod-Domar line of thought is that 

even for the long run the economic system is at best balanced on a knife-edge of 

equilibrium growth. Were the magnitudes of the key parameters the savings ratio, the 

capital-output ratio, the rate of increase of the labor force - to slip ever so slightly from 

dead center, the consequence would be either growing unemployment or prolonged 

inflation. 

 

Ironically, in formulating his alternative neoclassical steady state to resolve the Harrod-

Domar knife-edge problem, as confirmed by Uzawa (1961), Solow (1956) created an 

equally vexing knife-edge condition – a description of long-run growth that precludes the 

possibility of capital-augmenting technical change once the parameter σ “slips ever so 

slightly” from unity.  This paper may serve to illustrate how the knife-edge problems that 

emerge in economic literature are generally artifacts of the models that embody them – 

susceptibilities resulting from the quest for parsimony, not intrinsic features of the physical 

or economic world that we model and analyze.  Quite possibly, this research contribution 

also conveys vexing limits and puzzles to our understanding of growth, such as those 

embedded in the Harrrod-Domar and Solow models.  These present as welcome challenges 

for further research.     

                                                           
24

 See, for example, Glaeser et al, 2004. 



 

36 
 

 

 

Bibliography 

 

Acemoglu, Daron, 2998. “Why Do New Technologies Complement Skills? Directed 

Technical Change and Wage Inequality,” The Quarterly Journal of Economics, Vol. 113, 

No. 4 (Nov., 1998), pp. 1055-1089. 

 

Acemoglu, Daron, 2003. “Labor- and Capital Augmenting Technical Change, Journal of the 

European EconomicAssociation,  Volume 1, Issue 1, Pages 1–37. 

Acemoglu, Daron, 2009. Introduction to Modern Economic Growth, Princeton University, 

Princeton, NJ.  

Aghion and Howitt, 2007. “A Model of Growth Through Creative Destruction,” Econometrica 

60: pp. 323-351. 

Barro, Robert J, and Xavier Sala-i-Martin, 1995. “Technological Diffusion, Convergence, and 

Growth,” NBER Working Paper No. 5151, Issued June 1995. 

Besomi, Daniele, 1999. “Harrod on the classification of technological progress. The origin of a 

wild-good chase,” BNL Quarterly Review, no. 208, March 1999.  

Coccia, Mario, 2009.  “What is the optimal rate of R&D investment to maximize productivity 

growth?,” Technological Forecasting and Social Change, Volume 76, Issue 3, Pages 433-446. 

Diamond, Peter, McFadden, Daniel, Rodriguez, Miguel, 1978., “Measurement of the Elasticity 

of Substitution and the Bias of Technical Change,”, in M. Fuss and D. McFadden, Production 

Economics: A Dual Approach in Theory and Applications, Ch. 4, Vol. 2, Amsterdam: North 

Holland.  

Glaeser, E, R. La Porta, F. Lopez-de-Silanes and A. Shleifer (June 2004) “Do Institutions Cause 

Growth?,” Journal of Economic Growth, 2000 and NBER Working Paper no. 10568, June 2004. 

 

Grossman, Gene and Ellhanan Helpman, 1991. “Quality Ladders and the Theory of Growth,” 

Review of Economic Statistics, 68:43-61.  

Grossman, Gene M., Elhanan Helpman, Ezra Oberfield, and Thomas Sampson, “Balanced 

Growth Despite Uzawa,” 2017. American Economic Review 2017, 107(4): 1293–1312. 

Hahn, F.H. and Matthew, R.C.O., 1964. “The Theory of Economic Growth: A Survey,” The 

Economic Journal, Vol. 74, No. 296: pp. 779-902.  



 

37 
 

Hall, Bronwyn, Jacques Mairesse, and Pierre Mohnen, “Measuring the Returns to R&D,” NBER 

working paper, 15622., December 2009. 

Harrod, Roy F. 1961, “The ‘neutrality’ of improvements,” The Economic Journal, 71: 300-304.  

Hicks, John Richard, 1963 (1932). The Theory of Wages, Macmillan, London, 2
nd 

edition.  

Hulten, Charles R. and Frank C. Wykoff (1981). “The Estimation of Economic Depreciation 

Using Vintage Asset Prices.” Journal of Econometrics 15: 367-396. 

Irmen, Andreas, 2013. “Adjustment costs in a variant of Uzawa’s steady-state growth theorem,” 

Economic Bulletin, 33,4. pp. 2861-2869.   

Jefferson, Gary H., 2016. “Growth Theory and Growth Accounting: Reformulating Our 

Understanding of Growth,” 56 Pages Posted SSRN: 3 Sep 2016. 

Jones, Charles, I. and John C. Williams, 2000.  “Too Much of a Good Thing? The Economics of 

Investment in R&D,” Journal of Economic Growth, 5: 65–85. 

Jones, Charles I. and Dean Scrimgeour, 2005. “The Steady-State Growth Theorem: 

Understanding Uzawa (1961)”, August 16, 2005, 

https://www.aeaweb.org/assa/2006/0106_1430_0702.pdf  

Jones, Charles I. and Romer, Paul M., 2010. “The New Kaldor Facts: Ideas, Institutions, 

Population, and Human Capital,” American Economic Journal: Macroeconomics 2(1), 224-45.  

Jones, Charles I., and Dietrich Vollrath, 2013. Introduction to Economic Growth, W.W. Norton 

& Co., New York and London.  

Jones, Hywel, 1975. Modern Theories of Economic Growth, Thomas Nelson and Sons, Ltd.  

Kaldor, Nicholas, 1961, “Capital Accumulation and Economic Growth,” in F. A. Lutz and D. C. 

Hague, editors, The Theory of Capital. New York: St. Martin's Press.  

Kennedy, Charles (1964), Induced Bias in Innovation and the Theory of Distribution, The 

Economic Journal, Vol. 74, No. 295, pp. 541-547.  

Kline and Nathan Rosenberg, 1986. “An overview of innovation.” In R. Landau & N. Rosenberg 

(eds.), The Positive Sum Strategy: Harnessing Technology for Economic Growth. Washington, 

D.C.: National Academy Press, pp. 275–30 

León-Ledesma, Miguel A., Peter McAdam, and Alpo Willman, 2009. “Identifying the elasticity 

of substitution with biased technical change.” European Central Bank, working paper 1001, 

January 2009. 



 

38 
 

Li, Defu and Benjamin Bental, 2016.  What Determines the Direction of Technical Progress?,” 

Department of Economics, University of Haifa.    

Mankiw, Romer, Weil. 1992. “A Contribution to the Empirics of Economic Growth,” Quarterly 

Journal of Economics.  

Masanjala, Winford, H. and Chris Papagengiou, 2003. “The Solow Model with CES Technology: 

Nonlinearities and Parameter Heterogeneity, March 2003.  

Nuno, Gallo, 2010. “Optimal Research and Development Expenditure: A General Equilibrium 

Approach,” Banco de Espana, Madrid.   

Piketty, Thomas, 2015, The Economics of Inequality, (translated by Arthur Goldhammer), The 

Belknap Press of Harvard University Press.   

Pritchett, Lant, 1996. “Population Growth, Factor Accumulation, and Productivity,” The World 

Bank, Policy Research Department, Poverty and Human Resources Division, January 1996. 

Romer, Paul, 1990, “Endogenous Technical Change,” Journal of Political Economy, 98,5:  

Romer, Paul, 1994. “Origins of Endogenous Growth,” Journal of Economic Perspectives, 8,1:3-

22.  

Samuelson, Paul. (1965), “A Theory of Induced Innovations Along Kennedy-Weisacker Lines” 

The Review of Economics and Statistics, Vol. 47, No. 4 (Nov., 1965), pp. 343-356.  

Schumpeter, Josef, 1942. Capitalism, Socialism, and Democracy, London, Harper and Browthers. 

Scotchmer, Suzanne, 2004. Innovation and Incentives, MIT Press, Cambridge, MA.  

Simon, Herbert A., (1991). “Bounded Rationality and Organizational Learning,” Organization 

Science, 2.1, pp. 125-134.   

Solow, Robert M., 1956. “A Contribution to the Theory of Economic Growth.” Quarterly 

Journal of Economics 70 (1): 65–94. 

Solow, Robert M., 1957. “Technical Change and the Aggregate Production Function,” Review of 

Economics and Statistics, pp. 312-20.  

Solow, Robert M., 2000. Growth Theory: An Exposition, Oxford University Press, New York.  

Solow, Robert M., 1988. “Growth Theory and After,” The American Economic Review,  

Vol. 78, No. 3 (Jun., 1988), pp. 307-317.  

 

Sveikauskas, Leo, 2007.  “R&D and Productivity Growth: A Review of the Literature,” working 

paper 408, September 2007, Bureau of Labor Statistics.   



 

39 
 

 

Uzawa, Hirofumi, 1961. “Neutral Inventions and the Stability of Economic Growth,” Review of 

Economic Studies, 28: 117-124.  



 

40 
 

 

Figure I.  Solow with Labor-Augmenting Technical Change, σ =1 
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Figure 2.  Solow with Hick’s Neutral Technical Change, σ = 1 and σ < 1 
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Figure 3.  Hicks-neutral technical change with technology deepening only 
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Figure 4.  Savings, technical change, and growth 
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Annex I.  Glossary 

 

       Term   

      

gB = capital augmenting technical change 

gA = labor (human) capital-augmenting technical change 

gH = Harrod-neutral technical change 

 

Measures of depreciation: 

δK = [α/(1-α)]gB   (physical capital) 

δL = [(1-α)/α]gA   (human capital) 

 

Measures of physical investment: 

gK = [1/(1-α)]gB  (gross)       

gK* = gB   (net) 

gK’ = [α/(1-α)]gB   (physial replacement) 

gK” = gK’ – δK = 0  (net physical replacement) 

 

Measures of physical savings: 

sK = [1/(1-α)]gB(BK/Y) (gross)       

sK* = gB(BK/Y)  (net) 

sK’ = [α/(1-α)]gB(BK/Y) (replacement) 

gK’ – δK = 0   (net replacement) 

sK = sK* + sK’ 

 

Measures of human capital investment: 

gL = (1/α)gA   (gross)      

gL*= gA   (net) 

gL’ = [(1-α)/α]gA  (physical replacement) 

gL” = gL’ – δL = 0  (net physical replacement) 

 

Measures of human capital savings: 

sL = (1/α)gA(AL/Y)  (gross)      

sL* = gA(AL/Y)  (net) 

sL’ = [(1-α)/α] gA(AL/Y) (replacement) 

sL” = sL’ – δL = 0  (net replacement) 

sL = sL* + sL’ 
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Annex II.  The Model 

(may be interpreted as amendments to the Solow model) 

 

Y = [π(BK)
(σ-1)/σ 

+ (1-π)(AL)
(σ-1)/σ

]
σ/(σ−1)

 (production technology) 

 

Assumption, K and L are fixed by nature’s endowment; but highly malleable with applications of 

B and A, respectively.  

 

B/KY = v; AL/Y = u, gB = gA = gH  (fixed steady state technology-output ratios  

       and  Hicks-neutral technical change) 

 

gy = α(gB + gK) + (1-α)(gA + gL)         (Solow steady state version; gK, gL perfectly supply 

elastic such that the technology mulipliers are [1/(1-α)]gB and (1/α)gA, respectively; this model, 

gK, gL = 0, i.e., perfectly inelastic, constraining both technology multipliers to unity)  

 

Equations of motion in the steady state with embodied technical change: 

 

d(BK)/BK = gB + gK’ = sKY/BK – δK 

gK’ – δK = gK’ – [α/(1-α)]gB = 0 (fixed physical capital assumption) 

d(AL)/AL = gA + gL’ = sLY/AL – δL 

gL’ – δL = gL’ – [(1-α)/α]gA = 0 (fixed physical labor assumption) 

 

sK* = gB(BK/Y)   (physical capital net savings rate) 

sL* = gA(AL/Y)   (human capital net savings rate) 

 

gB = gH = (Y/BK)sK* (endogenous growth equation – physical capital technical change) 

gA = gH = (Y/AL)sL* (endogenous growth equation – human capital technical change) 

 

Factor shares: 

                       
α/(1-α) = [π/(1-π)][(BK/AL)]

(σ-1)/σ
      

 

          t-20 

 gL = ∫(nt/45)       

      
t-65 

      
 

Measurable steady-state requirements (for this model):  

δK = [α/(1-α)]gY 

δL = [(1-α)/α]gY 
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sK*/gY = (BK/Y) 

sL*/gY = (AL/Y) 

 
 


