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This paper proposes a scalable and simulation-free estimation algorithm for vector
autoregressions (VARs) that allows fast approximate calculation of marginal posterior
distributions. We apply the algorithm to derive analytical expressions for popular Bayesian
shrinkage priors that admit a hierarchical representation and which would typically require
computationally intensive posterior simulation methods. The proposed algorithm is
modular, parallelizable, and scales linearly with the number of predictors, allowing fast and
efficient estimation of large Bayesian VARs. The benefits of our approach are explored
using three quantitative exercises. First, a Monte Carlo experiment illustrates the accuracy
and computational gains of the proposed estimation algorithm and priors. Second, a
forecasting exercise involving VARs estimated on macroeconomic data demonstrates the
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1 Introduction

There is ample evidence that exploiting large information sets can be beneficial for

macroeconomic forecasting and structural analysis. While the early literature has established

this fact in univariate applications (Stock and Watson, 2002), a more recent literature applies

this concept to multivariate vector autoregressions (Banbura et al., 2010). Not surprisingly, a

large body of this literature relies on Bayesian methods, exploiting subjective prior information

to help with the often very low signal-to-noise ratio in the data. As an example, the early

literature on vector autoregressions (Doan et al., 1984; Litterman, 1979) realized the benefits

of using priors to achieve regularized and reliable estimators, and this led to the so-called

Minnesota (or Littermann) prior. There is also no shortage of work taking advantage of recent

advances in Bayesian computation to examine more complex prior structures. For example,

Del Negro and Schorfheide (2004) and Ingram and Whiteman (1994) specify priors from

general equilibrium models; Andersson and Karlsson (2008), George et al. (2008), Koop and

Potter (2004) , Korobilis (2013), Stock and Watson (2006) and Strachan and Dijk (2013) focus

on model averaging and selection priors; De Mol et al. (2008), Gefang (2014), Giannone et al.

(2015) and Huber and Feldkircher (forthcoming) examine the properties of shrinkage priors

with a hierarchical structure.

One of the main features distinguishing all these recent approaches from the earlier literature

is the ability to rely on prior distributions whose moments can be directly informed from the

data. More specifically, hyperparameters controlling how informative a prior distribution is

(and that would typically be a subjective choice) can now be integrated in the estimation

phase, simply by eliciting appropriate prior distributions on them. Such hierarchical priors

have excellent shrinkage properties and can approximate a wide class of penalized regression

estimators. Notable examples are the double-exponential prior that leads to the least absolute

shrinkage and selection operator (LASSO) estimator (Tibshirani, 1994) and the Spike-and-Slab

prior, which is connected to the generalized ridge estimator (Ishwaran and Rao, 2005). In the

machine learning literature, hierarchical priors are referred to as “sparse Bayesian learning” or

“adaptive sparseness” priors, due to the fact that the informativeness of the prior is learned

from the data; see Tipping (2001) and Figueiredo (2003). At the same time, estimators based
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on hierarchical priors are also highly correlated with estimators based on principal component

shrinkage; see De Mol et al. (2008).

Notwithstanding their excellent properties and empirical success, the vast majority of existing

applications featuring hierarchical priors have been severely limited due to their reliance on

computationally intensive Markov Chain Monte Carlo (MCMC) methods. For example, Huber

and Feldkircher (forthcoming) consider VARs with five variables, while George et al. (2008)

work with seven-variable models. In high-dimensions, when the VAR parameters proliferate at

a polynomial rate, such simulation-based methods become computationally cumbersome, if not

infeasible. A notable exception is Giannone et al. (2015) who, in order to estimate systems

with more than 20 equations, rely on the natural conjugate prior to obtain posterior estimates

for the degree of informativeness of their prior. However, their approach is restricted by the

fact that the natural conjugate prior treats each VAR equation symmetrically, and imposes

that the prior covariances of the coefficients in any two equations must be proportional to one

another. This means that if one wants to impose money neutrality in the VAR by shrinking

to zero the coefficient of money in the equation for GDP, then the symmetry of the natural

conjugate prior requires that the effect of money be removed in all other VAR equations in

the system, even if ones believes that money could still be a useful predictor in some of the

other equations, for example, that of inflation. Additionally, the natural conjugate prior only

allows the estimation of a single prior hyperparameter that is common to all VAR parameters,

a situation that may be quite restrictive in the presence of thousands of VAR parameters. In

constrast, typical hierarchical priors such as the Bayesian LASSO (Park and Casella, 2008),

allow each individual scalar coefficient of a regression model to have its own individual variance,

thus leading to the notion of “adaptive shrinkage”; see also Tipping (2001) and Huber and

Feldkircher (forthcoming).

In this paper we develop a new estimation algorithm for VARs under the proposed class

of hierarchical shrinkage priors. Unlike the previous methods available in the literature, the

proposed approach is simulation-free and can be used with models of high dimensions. Following

van den Boom et al. (2015a), the estimation relies on a simple transformation (“rotation”) of the

VAR, into a form that is observationally equivalent but which permits us to obtain analytical

expressions for the marginal posteriors of all VAR parameters. In addition to the analytical
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nature of the estimation algorithm, another main advantage of our method is that it can be

easily parallelized to take advantage of the processing capabilities of modern PCs and GPUs.

In particular, suppose that the interest is on estimating a k-dimensional vector of parameters

β = (β1, ..., βk)
′. In this case, our algorithm can be easily parallelized into k separate tasks, each

one leading to an analytical expression for the marginal posterior of βi, i = 1, ..., k. We show,

using a Monte Carlo exercise, that our algorithm is as accurate as the comparable simulation-

based methods, but at a fraction of the computing time. At the same time, the simulation-free

nature of the algorithm means that there are no “convergence” or other similar numerical issues.

These features of our estimation algorithm bring us to the remaining contributions of the

paper. We first show how to use the new estimation algorithm to derive analytical posteriors and

adaptive shrinkage for three popular cases of hierarchical priors: Normal-Jeffreys (Hobert and

Casella, 1996); Spike-and-Slab (Mitchell and Beauchamp, 1988); and Normal-Gamma (Griffin

and Brown, 2010). We then focus on two empirical exercises inspired by the recent literature

on high-dimensional VARs. Our first application is a macroeconomic forecasting exercise using

large-dimensional VARs. Banbura et al. (2010), Carriero et al. (2012), Carriero et al. (2016) and

Koop et al. (2017) provide strong evidence that high-dimensional Bayesian VARs can consistently

outperform smaller models. We show that when combined with the three hierarchical priors

we focus on, our algorithm outperforms all competing methods in terms of forecast accuracy.

Our second exercise involves using our algorithm to estimate impulse response functions from

an identified BVAR. In particular, we simulate artificial time-series data from a large-scale

DSGE model and show that our methods can be used to obtain very accurate impulse response

functions.

The remainder of the paper is organized as follows. Section 2 describes in detail the

estimation procedure we rely on to obtain analytical posteriors for the regression parameters in

the presence of non-conjugate priors. Next, Section 3 examines the properties of three popular

cases of hierarchical shrinkage priors and provides analytical derivations for the marginal

posteriors of the coefficients of interest. Section 4 extends the methods described in Section 2

and Section 3 to the VAR case. After that, Section 5 describes the Monte Carlo exercise we

use to test the accuracy of the estimation algorithm and the properties of the implied adaptive

shrinkage. Section 6 is devoted to the macroeconomic forecasting application, while Section 7
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focuses on extending our algorithm to estimate impulse response functions using artificial data

obtained from a large-scale DSGE model. Finally, Section 8 offers some concluding remarks.

2 A new Bayesian estimation methodology

To illustrate how our estimation procedure works in a regression context, consider a simple

univariate linear regression model of the form

y = Xβ + v, (1)

where y = (y1, ..., yT )′ is a T × 1 vector featuring our dependent variable, X = (X ′1, ...,X
′
T )
′

is

a T × k matrix involving T observations on k regressors, β is the corresponding k × 1 vector of

regression coefficients, and v = (v1, ..., vT )′ ∼ N
(
0, σ2IT

)
. When k is large, estimation of the

high-dimensional posterior distribution p (β|y) involves very costly operations (e.g. inversion

of the high-dimensional matrix X), and quickly becomes computationally demanding or even

infeasible.

We now introduce an alternative approach to evaluate the marginal posteriors

{p (βj |y)}kj=1, without the need to compute a number of high-dimensional integrals over the

joint posterior distribution p (β|y). We then proceed by approximating the full posterior

p (β|y) using the product of all k marginal posteriors.1 Put simply, our approach works by

transforming a complex and often intractable k-dimensional posterior evaluation problem into

the product of k independent (and much simpler) estimation steps. We follow van den Boom

et al. (2015a,b) and, one at a time, for each of the k columns in X, define the following

rotation,

y∗j = q′jy, ỹj = W ′
jy, (2)

where qj = Xj/ ‖Xj‖ is a T × 1 unit vector in the direction of j-th column of X and W j is

an arbitrarily chosen T × T − 1 matrix, subject to the constraint W jW
′
j = IT − qjq′j . Note

that since the T × T orthogonal matrix Qj =
[
qj |W j

]
is of full rank, the suggested rotation

provides a one-to-one mapping between the original data y and the rotated data
(
y∗j , ỹ

′
j

)′
. We

1This assumption implies posterior independence among coefficients, that is, p (β|y) ≡
∏
j p (βj |y). While

such independence assumption can be very helpful for prediction, in Section 7 we show how, in the context of
structural VAR inference, to modify our procedure in order to obtain the exact joint posterior.
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show in Appendix A.1 that if we multiply both sides of (1) by Qj , after rearranging we obtain

the following observationally equivalent regressions

y∗j = ‖Xj‖βj+X∗(−j)β(−j) + v∗j ,

ỹj = X̃(−j)β(−j) + ṽj ,
(3)

where X∗(−j) = q′jX(−j) is a 1 × (k − 1) vector, v∗j = q′jv is a scalar, X̃(−j) = W ′
jX(−j) is a

(T − 1)× (k − 1) matrix, ṽj = W ′
jv is a (T − 1)× 1 vector, and X(−j) = X \Xj denotes the

k − 1 columns of X after its j-th column has been removed. Similarly, β(−j) = β \ βj denotes

the k − 1 elements of β after its j-th element has been removed. It also follows that the joint

likelihood of the rotated data
(
y∗j , ỹ

′
j

)′
can we represented as[

y∗j
ỹj

]∣∣∣∣β, σ2 ∼ N
([
‖Xj‖

0

]
βj +

[
X∗(−j)
X̃(−j)

]
β(−j), σ

2IT

)
, (4)

where, due to the orthogonality of Qj =
[
qj |W j

]
, the variance of the rotated data is still σ2.

Most importantly, the rescaled regression in (3) separates the scalar y∗j , which depends on βj ,

from the remaining T − 1 observations ỹj , which are conditionally independent of the effect

of βj . At the same time, the form of the rescaled likelihood in (4) implies that y∗j and ỹj do

not share covariance terms, which ultimately means that we can treat (3) as two conditionally

separable regression models. Combined, these last two equations provide insights on how to

devise a simple two-step OLS procedure to estimate βj . First, regress ỹj on X̃(−j) to obtain

estimates for β(−j) and σ2, namely β̂(−j) and σ̂2. Next, condition on the regression variance σ̂2

and regress
(
y∗j −X∗(−j)β̂(−j)

)
on ‖Xj‖ to obtain an estimate for βj . Note that the estimates

that we obtain from this two-step procedure are numerically identical to the OLS estimates we

would recover if working with the original regression model in (1).

We now exploit the form of the likelihood in (4), along with Bayes Theorem, to derive the

following expression for the marginal posterior distribution p (βj |y)

p (βj |y) = p
(
βj |y∗j , ỹj

)
=
p
(
βj , y

∗
j |ỹj

)
p
(
y∗j |ỹj

)
∝ p

(
y∗j |βj , ỹj

)
p (βj) ,

(5)

where we have used the fact that p
(
y∗j |ỹj

)
does not involve βj , meaning it is simply a normalizing

constant that can be removed, and also the result that ỹj does not convey any information about
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βj , i.e. p
(
βj |ỹj

)
≡ p (βj). Equation (5) shows that thanks to the rotation in (2), the marginal

posterior distribution of βj is now proportional to the rotated conditional likelihood p
(
y∗j |βj , ỹj

)
and the prior p (βj).

2 While we postpone our discussion on the prior distribution until the next

section, it is of immediate interest to derive an expression for p
(
y∗j |βj , ỹj

)
, and this is where

we now turn our attention.

Note that, from a Bayesian standpoint, this conditional likelihood function can be interpreted

as the predictive distribution of the “out-of-sample” data y∗j given the “in-sample” data ỹj , after

the parameters β(−j) and σ2 have been integrated out. Using standard results for Bayesian

predictive analysis (Koop, 2003), we show in Appendix A.2 that under a natural conjugate prior

for (β(−j), σ
2) it follows that3

p
(
y∗j |βj , ỹj

)
= ‖Xj‖βj + t2d

(
µj , τ

2
j

)
≈ ‖Xj‖βj +N

(
µj , τ

2
j

)
,

(6)

where

µj = X∗(−j)β(−j), (7)

and

τ2j =
ψ(−j)

d

(
1 +X∗(−j)V β(−j)X

∗′
(−j)

)
. (8)

The exact formulas for the posterior moments β(−j), V β(−j) , ψ(−j), and d are standard to

derive, and are also provided in Appendix A.2. Two key remarks are in order. First, note that

in equation (6) we have chosen to approximate a Student-t predictive distribution using a Normal

distribution. An immediate question is how good an approximation this will be. Note that if

σ2 is known, then the formulas are exact. In other words, the rotated likelihood p
(
y∗j |βj , ỹj

)
is

indeed normal with the moments specified above. When σ2 is unknown then the approximation

can still be quite accurate, and the accuracy will increases with the sample size.4 Second, jointly

2One implicit assumption we will rely on throughout is that the elements of β need to be a-priori independent,
that is, p (β) =

∏k
j=1 p (βj). This is a standard assumption in Bayesian analysis using hierarchical or other priors

(e.g. Minnesota prior), since it is generally quite hard to objectively specify prior beliefs on the coefficients’
cross-correlations.

3While there are many alternative prior choices available for (β(−j), σ
2), we have chosen to rely on the natural

conjugate prior because, among other things, it leads to proper posteriors for the regression parameters even when
the number of parameters (k − 1) is larger than the total number of observations (T − 1), and at the same time
leads to a closed-form expression for the conditional likelihood p

(
y∗j |βj , ỹj

)
.

4This is related to the fact that a Student-t distribution with a sufficient number of degrees of freedom -
typically 100 or more - converges to a Normal distribution.
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equations (5) and (6) imply that it is now possible to compute the marginal posterior for βj

by solving a scalar linear regression model with normal data and known variance, τ2j . Most

importantly, the fact that the variance of this regression is known and fixed implies that we

can derive analytically the marginal posterior for βj even for priors that would normally require

time-consuming simulation methods. This is a key result that we exploit in Section 3 to compute

simulation-free marginal posteriors for a host of hierarchical shrinkage priors.

The estimation steps resulting from the above analysis are summarized in Algorithm 1. While

exact expressions depend on the choice of prior distribution, p (βj), here we give an example of

how our algorithm would work with a generic prior.

Algorithm 1 Scalable posterior estimation algorithm

for j = 1 to k
Step 1: Prepare rotation matrices
• Compute qj = Xj/ ‖Xj‖
• Generate each element of W j from N (0, 1)
• Create Qj =

[
qj |W j

]
, using QR decomposition to ensure orthogonality

Step 2: Apply rotation
• Compute rotated data y∗j and ỹj , X

∗
(−j) and X̃(−j)

Step 3: Estimate auxiliary regression

• Regress ỹj on X̃(−j), obtain moments of p
(
β(−j)

∣∣∣σ2, ỹj) and p
(
σ2
∣∣ ỹj) analytically

• Derive moments of rotated likelihood, µj and τ2j , analytically

Step 4: Estimate parameter of interest

• Given µj and τ2j , regress
(
y∗j − µj

)
on ‖Xj‖

• Obtain moments of p (βj |y) analytically

end for

3 Hierarchical shrinkage priors

We now turn our focus to the prior for βj (j = 1, ..., k) in (5). While the estimation algorithm

that we have just described can be applied to a variety of priors (provided that the elements of

β are a-priori independent), we focus here on the following class of adaptive hierarchical priors
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for βj ,
5

βj |λ2j ∼ N
(

0, λ2jV βj

)
,

λ2j ∼ G,
(9)

where V βj denotes the part of the prior scale parameter chosen by the researcher, while λ2j

(or its square root, λj , depending on the specification) is a random variable with its own prior

distribution, G.6 Two observations are in order. First, the hierarchical form of the prior shows

that conditional on the idiosyncratic scale parameter λ2j , the j-the regression coefficient βj has a

normal prior distribution. Combined with the approximation in (6), this is the key element that

will allow us to derive the posterior of βj without resorting to simulation methods. Second, while

the conditional prior for βj is normal, the marginal prior of βj , p (βj) =
∫
N
(

0, λ2jV βj

)
dG
(
λ2j

)
ought not to be and, depending on the choice of G, can result in very different shapes, with

possibly a large mass around zero and much heavier tails than a bell-shaped Normal prior, two

features that will impose shrinkage in the regression model.

Within the class of adaptive hierarchical priors, we focus on three special cases for G, which

in turn lead to three well-known Bayesian shrinkage estimators.

3.1 Normal-Jeffreys

The first choice of prior for λ2j is a Jeffreys prior, i.e. p
(
λ2j

)
∝ 1/λ2j , which is fully uninformative

about λ2j . Notice that this particular choice of prior for λ2j leads to an improper marginal prior

for βj , i.e. p (βj) ∝ |βj |−1, a prior that is sharply peaked at zero and is similar to the popular

Laplace prior, and therefore favors sparsity in the regression model (see for example Tipping,

2001; Figueiredo, 2003).

Thanks to the approximation in (6) and the conditional normality of the prior, it is

straightforward to derive the marginal likelihood for y∗j analytically. This takes the form

p
(
y∗j
∣∣λ2j , ỹj) =

∫
p
(
y∗j
∣∣βj , ỹj) p (βj |λ2j) dβj

= N
(
y∗j
∣∣µj , ‖Xj‖2 λ2jV βj + τ2j

)
,

(10)

5The assumption that the prior mean of βj is zero is without loss of generality. All the results that follow can
be trivially updated to allow for a non-zero prior mean.

6Alternatively, we could also refer to λ2
j as the local variance component. See for example Polson and Scott

(2010).
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where N (z|a, b) denotes the probability of a random variable z evaluated at a Normal

distribution with mean a and variance b. Next, similar to the analysis of Giannone et al.

(2015), we can choose the optimal shrinkage intensity λ2j in (9) by maximizing (10), i.e.

λ̂2j = arg max
λ2j

p
(
y∗j | λ2j , ỹj

)
. (11)

We show in Appendix A.3 that the posterior estimate of λ2j that maximizes the marginal

likelihood takes the form

λ̂2j = max

0,

(
y∗j − µj

)2
− τ2j

‖Xj‖2 V βj

 . (12)

Finally, plugging the optimal shrinkage intensity λ̂2j into (9) leads to the marginal posterior

p
(
βj |λ̂2j ,y

)
∼ N

(
βj , V βj

)
, (13)

where both βj and V βj depend on λ̂2j , and are given by

V βj =
τ2j λ̂

2
jV βj

‖Xj‖2 λ̂2jV βj + τ2j
, βj =

‖Xj‖ λ̂2jV βj

(
y∗j − µj

)
‖Xj‖2 λ̂2jV βj + τ2j

. (14)

Notice, to conclude, that both the maximization in (12) and the prior moments in (14) only

include scalar operations, so they are trivial to compute ∀j ∈ [1, k].

3.2 Normal-Gamma

The second prior specification we consider within the class of hierarchical priors in (9) is the

popular class of Normal-Gamma priors, studied in Griffin and Brown (2010) and extended to

the VAR case by Huber and Feldkircher (forthcoming). This prior assumes that λ2j ∼ G (c1, c2),

where c1 and c2 denote the shape and scale of the Gamma distribution G. To see the effect of

the hyperparameters c1 and c2 on the shape of the marginal prior for βj , the bottom panels

of Figure 1 plot the marginal distribution of βj for two different choices of c1 and c2. As a

benchmark to compare against, the top left panel of the figure plots the empirical distribution

of the non-hierarchical version of (9), where λ2j = 1 is non-stochastic and V βj = 10.7 The bottom

left panel plots the marginal prior of βj when G is the Gamma density and the hyperparameters

7For a large prior variance this can be considered a locally uninformative prior, while for small values of V βj
it results in the ridge estimator.
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are set to c1 = 1 and c2 = 2. As it can be seen from this panel, this choice of hyperparameters

generates a marginal prior for βj that, compared to the benchmark bell-shaped Normal prior in

the top left panel of the figure, shrinks towards zero at a much faster rate. Next, the bottom

right panel of the figure considers the case where c1 = 0.1, c2 = 2. This choice leads to a much

more intense shrinkage, with a clear spike around zero and tails that are significantly heavier

than a Normal density.8

We can proceed in an analogous manner as in the Normal-Jeffreys case, and choose the

optimal shrinkage intensity by maximizing the posterior of λ2j ,

λ̂2j = arg max
λ2j

p
(
y∗j | λ2j , ỹj

)
p
(
λ2j
)
, (15)

which, after taking logs, leads to the following maximization

λ̂2j = arg max
λ2j

−1

2
ln
(
τ2j + ‖Xj‖2λ2jV βj

)
− 1

2

(
y∗j − µj

)2
τ2j + ‖Xj‖2λ2jV βj

+ (c1 − 1) lnλ2j − c2λ2j

 .

(16)

Once again, this is a straightforward maximization over scalar quantities, hence trivial to

compute. Finally, plugging the optimal shrinkage intensity λ̂2j into (9) leads to a marginal

posterior for βj with moments as in (14).

3.3 Spike-and-Slab

The third specification we consider for our hierarchical prior is the popular Spike-and-Slab prior.

While it is possible to cast this prior in the hierarchical form of (9) (see for example Griffin and

Brown, 2010, p. 175), we follow the literature and write this prior as an explicit mixture of

distributions

βj |λj ∼ (1− λj) δ0 + λjN
(

0, V βj

)
,

λj ∼ Bernoulli (π0) ,
(17)

8Notice that the Normal-Jeffreys prior is not plotted in this figure because it is an improper prior for λ2
j , and

leads to a marginal prior for βj that does not integrate to one (and, thus, cannot be represented graphically).
However, following Tipping (2001) we can think of the Normal-Jeffreys prior as a special case of a Normal-
Inverse Gamma (IG) mixture, with λ2

j ∼ IG (α1, α2) where α1, α2 → 0. The Normal-IG mixture is the typical
representation of the Student-t distribution, which is more peaked at zero compared to the Normal distribution.
Therefore, the shrinkage induced by a Normal-Jeffreys can be broadly thought of as the limit of a Student-t prior
with very large (infinite in practice) variance.
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where δ0 is the Dirac delta function at zero, while λj is now a Bernoulli random variable with

mean π0 which, in turn, denotes the prior proportion of non-zero regressors in the model. As

noted by Griffin and Brown (2010), the Spike-and-Slab and Normal-Gamma priors can lead to

very similar forms of shrinkage. It is in fact possible to elicit the prior hyperparameters c1 and

c2 of the Normal-Gamma prior and the prior inclusion probability π0 of the Spike-and-Slab prior

in a way to similarly constrain most of the variation in the priors to a small set of regressors.

Figure 1 makes this point explicitly, where in the top right panel we show the marginal prior of

βj for the Spike-and-Slab case and π0 = 0.5 (as with the other three panels, we set V βj = 10).

As it can be seen, the Spike-and-Slab prior with π0 = 0.5 leads to a marginal prior for βj that

behaves very much like the Normal-Gamma case when c1 = 0.1 and c2 = 2 (bottom right panel),

placing a considerable mass at zero and featuring very heavy tails.

It follows that the posterior of λj is of the same form, that is λj |y ∼ Bernoulli (π̂j), where

π̂j = p (λj = 1|y) =
p
(
y∗j

∣∣∣ λj = 1, ỹj

)
p (λj = 1)

p
(
y∗j

∣∣∣λj = 0, ỹj

)
p (λj = 0) + p

(
y∗j

∣∣∣λj = 1, ỹj

)
p (λj = 1)

(18)

where π̂j is the posterior probability of inclusion (PIP) of predictor j in the regression model

(not to be confused with a “p-value” or “significance level”). We show in Appendix A.4 that π̂j

simplifies to

π̂j =
N
(
y∗j

∣∣∣µj , τ2j + ‖Xj‖2 V βj

)
π0

N
(
y∗j

∣∣∣µj , τ2j) (1− π0) +N
(
y∗j

∣∣∣µj , τ2j + ‖Xj‖2 V βj

)
π0

(19)

Finally, in this case the marginal posterior of βj is equal to

p (βj |y) =

∫
p (βj |λj ,y) p (λj |y) dλj

= p (λj = 0|y) p (βj |λj = 0,y) + p (λj = 1|y) p (βj |λj = 1,y)

= (1− π̂j)δ0 + π̂jN
(
βj , V βj

) (20)

where βj and V βj are again given by (14) in the special case when λ̂j = 1.

4 Application to BVAR estimation

Up to this point, we have focused our exposition on a univariate regression model. Consider

now the following n-dimensional VAR(p) model,

yt = c+A1yt−1 + . . .+Apyt−p + εt, t = 1, ..., T, (21)
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where yt is an n×1 vector of time series of interest, c is an n×1 vector of intercepts, A1, ...,Ap

are n× n matrices of coefficients on the lagged dependent variables, and εt ∼ N (0,Ω), with Ω

an n×n covariance matrix. We next rewrite the original VAR model in (21) in a recursive form,

which allows to estimate the VAR coefficients {c,a} and the elements of the covariance matrix

Ω one equation at a time. This, in turns, allows us to readily apply the estimation method we

presented in Section 2 to the VAR, by iterating recursively through a collection of univariate

regressions.9

From a computational perspective, there are at least two ways one can re-write the reduced-

form VAR in (21) as a recursive system. For example, Koop et al. (2017) rely on a recursive

structural VAR representation. Here we use an alternative recursive form that is due to Carriero

et al. (2016). We show in Appendix A.5 that the i-th equation of the VAR (i = 1, ..., n) can be

written as

yi,t = ci + ai,·Zt + γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t, (22)

where ci is the scalar intercept, Zt =
[
y′t−1, ...,y

′
t−p
]′

is a np×1 vector containing all p lags of yt,

ai,· = [ai,1, ..., ai,np] denotes the corresponding vector of coefficients, u1,t, ..., ui−1,t and σ1, ..., σi−1

are the VAR structural residuals and standard deviations from all the previous i− 1 equations,

and γi,1, ..., γi,i−1 their associated coefficients. Next, let Xi,t = (Z ′t, σ1u1,t, ..., σi−1ui−1,t) and

rewrite (22) as

yi = Xiβi + vi, (23)

where yi = (yi,t, ..., yi,T )′, Xi =
(
X ′i,1, ...,X

′
i,T

)′
, βi = (ci,ai,·, γi,1, ..., γi,i−1)

′, and

vi = (σiui,1, ..., σiui,T )′. With the i-th equation of the VAR now in the same form as (1), we

can straightforwardly apply the algorithm in Section 2 tot the VAR, one equation at a time.

Next, we can modify the hierarchical prior in (9) to work with the VAR i-th equation by

re-writing it as follows

βij |λ2ij ∼ N
(

0, λ2ijV βij

)
,

λ2ij ∼ G,
(24)

9Following standard results in multivariate models, one can factorize the covariance matrix Ω into a diagonal
matrix of variance terms and a lower triangular matrix of covariance terms. This factorization allows the covariance
terms to be treated as contemporaneous right-hand side predictors in each equation of the VAR and, because
of the imposed recursive ordering, allows to estimate the VAR equation-by-equation; see Hausman (1983) for an
early discussion of this approach.
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where j = 1, ..., ki indexes the elements of βi, and ki = np + i denotes the total number of

coefficients in the i-th equation of the VAR. One final point worth mentioning is that an added

benefit of the procedure in (23)-(24) is that we can now apply our hierarchical shrinkage priors

also to the coefficients γi,1, ..., γi,i−1, thus, explicitly providing shrinkage to the contemporaneous

covariance elements in the VAR.

5 Monte Carlo analysis

In this section we evaluate numerically the new approach using simulated data. The purpose of

this exercise is manifold. First, we want to assess the numerical precision of the new estimation

method. We have already argued that if we apply OLS to the two-stage rotated regression in (3),

we will obtain coefficients estimates that are identical to those we would obtain from the original

regression problem in (1). However, it is important to evaluate whether the new estimation

algorithm works well under a wide variety of Bayesian priors that will lead to biased penalized

estimators. Second, we want to establish whether the three hierarchical priors introduced in

Section 3 have good shrinkage properties when applied to a VAR setting and a finite amount

of data. While the properties of such priors have been thoroughly examined and discussed in

the literature, it is important to assess how the approximations we have introduced affect their

performance. Finally, we want to obtain a measure of how well the proposed method fares

against popular methods in recovering the true VAR coefficients.

5.1 Setup of Monte Carlo experiment

In order to investigate the importance of shrinkage as a function of the VAR size, we consider

VARs of three different dimensions, that is, small (n = 3), medium (n = 7), and large (n = 20).

For each VAR dimension, we generate 1,000 datasets with T = 150 observations each. In all

three cases, we set the number of lags to p = 2. The data generating process is that of a sparse

VAR, where we allow the sparsity pattern to be random. We first model the persistence of each

variable in the VAR by setting the first own lag coefficient to be in the range [0.4, 0.6], i.e.

A1 = diag (ρ1, ρ2, ..., ρn) , (25)

where ρi ∼ U(0.4, 0.6), i = 1, ..., n. The coefficients on the subsequent own lags, (Al)i,i are then

generated according to the rule that (Al)i,i = (A1)i,i /l
2 (l = 2, ..., p), implying a geometric decay
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in their magnitudes, with the more distant lags having a lesser impact.10 As for the coefficients

on the other lags, we set them according to the following rule:

(Al)i,j =

{
N
(
0, σ2A

)
with prob ξA

0 with prob (1− ξA)
l = 1, ..., p, i 6= j, (26)

where ξA ∈ (0, 1) is the probability of obtaining a non-zero coefficient. We set σ2A = 0.1 and

calibrate the inclusion probability according the the VAR size by setting ξA = 1/ (n− 1). This

means, for example, that in a seven-variable VAR only 1/6 of the coefficients are expected to

be non-zero. Next, we decompose the covariance matrix Ω as Ω = ΦΦ′ where

Φ =


1 0 ... 0

ϕ2,1 1
. . .

...
...

. . .
. . . 0

ϕn,1 ... ϕn,n−1 1

 , (27)

and generate the element of Φ according to the following rule

ϕi,j =

{
U (0, 1) with prob ξΦ
0 with prob 1− ξΦ

i > j. (28)

where we set ξΦ = 0.5.

Along with our proposed algorithm and the three priors described in Section 3

(Normal-Jeffreys; Normal-Gamma; Spike-and-Slab), we consider the following three

competing estimation methods: OLS (VAR); hierarchical Minnesota shrinkage as in Giannone

et al. (2015) (BVAR-GLP); stochastic search for VAR restrictions algorithm of George et al.

(2008) (SSVS). The BVAR-GLP approach relies on Minnesota-type moments, so due to the

fact that the generated VARs are all stationary we set the prior mean on the first own lag

coefficient to 0.9. For all the remaining coefficients, we set the prior mean to zero (see Kadiyala

and Karlsson, 1997, for a discussion of these choices). For consistency, we use the same prior

means in all the other Bayesian approaches, including ours (that is, we modify the hierarchical

prior in (24) to allow for a non-zero mean, which we denote with β
ij

). The remaining settings

for the BVAR-GLP algorithm are the default ones suggested by the authors. As for the SSVS

algorithm, we follow George et al. (2008) and set (using the authors’ notation) the prior

10The relatively low value of ρi and the decay in the own lag coefficients is done to guarantee that all variables
in the VAR are stationary. In practice, in all cases we examine the roots of the generated VAR coefficients and
discard all simulated DGPs producing non-stationarity variables.
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inclusion probabilities to pi = qij = 0.5, and the prior variances to R = Rj = I, τ0 = κ0 = 0.1

and τ1 = κ1 = 1. As for the remaining details of our approach, we set the prior variance in (24)

to V βj = 10. Also, in the Spike-and-Slab case we set the prior inclusion probability for all

predictors to π0 = 0.5, while in the Normal-Gamma case we set c1 = 0.1 and c2 = 2.11

5.2 Results

We begin by drawing attention to the estimated shrinkage intensity implied by our approach

under the three different priors we considered. The top panels of Figure 2 and Figure 3 plot the

empirical distribution of the average shrinkage intensity λ over the 1,000 Monte Carlo iterations

for the three VAR sizes and for the Normal-Jeffreys and Normal-Gamma cases, respectively.

In both figures, λ = 1
K

∑n
i=1

∑ki
j=1 λ̂ij , where K =

∑n
i=1 ki denotes the total number of VAR

coefficients, including the covariance terms in Φ. As one may expect, both in the case of the

Normal-Jeffreys and the Normal-Gamma prior, the average shrinkage intensity becomes smaller

as the VAR size increases, implying that more shrinkage is imposed in higher dimensions. This

is a desirable feature of shrinkage estimation in VARs, and in line with previous findings in the

literature; see Banbura et al. (2010) and their relevant discussion. This result is particularly

clear in the case of the Normal-Gamma prior, where the empirical distribution of λ becomes

more concentrated and informative as the VAR size increases.

A notable feature of our procedure is that it yields individualized shrinkage hyperparameters

for each VAR coefficient, including the elements of the covariance matrix Φ. It would then be

conceivable to expect that the VAR parameters which are equal to zero in the DGP should be

accompanied by, on average, lower λ̂ij ’s. In order to verify this claim, the bottom panels of

Figure 2 and Figure 3 plot the empirical distributions of the average shrinkage intensity λ, after

the individual λ̂ij ’s have been grouped according to whether the underlying VAR coefficients

are equal to zero or not in the DGP. As expected, for both priors we find that the average

shrinkage intensity of the zero VAR parameters (red bars) is significantly on the left of the

average shrinkage intensity corresponding to non-zero VAR coefficients (blue bars). Notably,

Figure 3 shows that for a large number Monte Carlo iterations, the average shrinkage intensity

11In all cases, intercepts are left unrestricted using a diffuse prior. Note also that for both the SSVS algorithm
and our estimation algorithms, we allow for shrinkage estimation of the sparse covariance terms ϕi,j .
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associated with the zero VAR coefficients is exactly zero, meaning that the hierarchical Gamma

prior is capable of accurately flagging the irrelevant coefficients, shrinking all of them to zero.

This result is more pronounced for the n = 3 and n = 7 VAR sizes, implying that for the larger

n = 20 case, different values of the hyperparameters c1, c2 may be needed to achieve a similar

result.

Figure 4 plots the distribution of the average posterior inclusion probabilities (PIPs) for

the Spike-and-Slab prior, π = 1
K

∑n
i=1

∑ki
j=1 π̂ij . In this case, due to the fact that there is a

well-established alternative MCMC algorithm for VARs that relies on this prior, we contrast the

results of our Spike-and-Slab hierarchical prior with those from the SSVS approach of George

et al. (2008). In particular, the top panels of the figure plot the empirical distributions of π

estimated with the SSVS algorithm, while the bottom panels plot the empirical distribution

of π estimated using our algorithm and the Spike-and-Slab hierarchical prior. Once again,

we separately plot the average PIPs corresponding to VAR parameters that are equal to zero

(different from zero) in the DGP. As it can be seen from inspecting the figure, both algorithms

are quite accurate at flagging which VAR parameters should be zero (or not), with the empirical

distributions of the average PIPs from the zero VAR coefficients on the left of the corresponding

non-zero coefficients’ empirical distributions. Nevertheless, our algorithm performs visibly much

better than the SSVS, with the estimated distributions being closer to zero and one (in the case of

the SSVS algorithm, both distributions are close to 0.5 implying a decreased ability to determine

if a VAR parameter is zero or not).

We next look at the effectiveness of the various methods in recovering the parameters of the

true data generating process. To this end, for each of the approaches considered in this section,

we compute the Mean Absolute Deviation (MAD), defined as

MAD(r,s) =
1

K

n∑
i=1

ki∑
j=1

∣∣∣β(r)ij − β̂
(r,s)
ij

∣∣∣ , (29)

where s denotes the method used (VAR, BVAR-GLP, SSVS, Normal-Jeffreys, Normal-Gamma,

Spike-and-Slab), r = 1, ..., 1, 000 keeps track of the MC simulations, K denotes the total number

of lag coefficients in the VAR, β
(r)
ij is the true VAR coefficient from the r-th simulation, and β̂

(r,s)
ij

denotes the (posterior mean of the) corresponding estimate according to method s. Figure 5

shows the quartiles and median of the MAD statistic over all 1,000 Monte Carlo iterations, by
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means of box plots. For n = 3 the various shrinkage methods do not appear to improve much

compared to OLS in recovering the true VAR parameters. However, as the VAR size increases,

OLS begins to work less well. On the other hand, our estimation algorithm combined with the

three hierarchical priors we introduced in Section 3 seems capable of accurately recovering the

true VAR parameters, performing better than SSVS and as well or better than the BVAR-GLP

method.

We conclude this section with a look at the computational loads of the various approaches

considered thus far. For each of the Bayesian methods considered in this section, Table 1 reports

the CPU time in seconds required to complete a single Monte Carlo iteration for the three VAR

sizes, where lower values imply faster estimation. As it can be seen from the table, our approach

is significantly faster than all the Bayesian alternatives considered in this section. In particular,

thanks to the scalability of our posterior estimation algorithm, the CPU time of our proposed

approach does not grow with the VAR size, a feature that makes it a particularly appealing

tool to use with large dimensional VARs. We exploit this property of our approach in the next

section.12

6 Macroeconomic forecasting

Combined with the speed-up in CPU times implied by our proposed simulation-free algorithm,

the excellent properties of the hierarchical priors we introduced in Section 3 make them a very

natural choice for a large dimensional VAR application. In this section, we investigate this claim

empirically.

6.1 Data, models, and prior settings

We collect 40 quarterly variables for the US spanning the period 1959Q1 to 2015Q4.13 The

data, which are obtained from the Federal Reserve Economic Data (FRED) and are available

12We should note that in this comparison the various competing methods were tuned to be as fast as possible
so, in practice, their quoted times in Table 1 could be higher than showed here. In particular, we have relied
on the analytical version of the BVAR-GLP algorithm (their simulation-based version provided quantitatively
similar results). As for the SSVS algorithm, we have set the total number of MCMC iterations (including burn-
in) to 1,100, which we found to be sufficient with the simulated data but possibly on the low side with real-data
applications.

13For the variables which are originally observed at the monthly frequency, we transform them into quarterly
series by computing the average of their monthly values within each quarter.
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at https://fred.stlouisfed.org, cover a wide range of key macroeconomic variables that applied

economists monitor regularly, such as different measures of output, prices, interest and exchange

rates, and stock market performance. We provide a full list of the data and their transformations

in order to achieve stationarity in Appendix B. Out of the 40 series, we further distinguish

seven “variables of interest”, that is, key variables of interest which we will inspect very closely

in order to evaluate how well the different models perform. These variables are: real gross

domestic product (GDP), GDP deflator (GDPDEFL), and federal funds rate (FEDFUNDS),

total employment (PAYEMS), unemployment rate (UNRATE), consumer prices (CPIAUCSL),

and the 10-year rate on government securities (GS10).

We estimate VARs of three different sizes: medium (only the seven variables of interest),

large (variables in medium plus an additional 13), and X-large (variables in large plus an

additional 20), that is, we consider seven, 20 and 40-variable VARs. All VARs have a

maximum of p = 5 lags. For each model size, we estimate a range of different models. In

addition to the three hierarchical priors estimated using our simulation-free method, which we

denote as N-J (Normal-Jeffreys), SNS (Spike-and-Slab), and N-G (Normal-Gamma), we

consider five established methods for dealing with VARs of possibly large dimensions. The first

two methods are based on the Minnesota prior with optimal tuning of its shrinkage, one allows

for Bayesian variable selection and model averaging, and two methods rely on factor shrinkage.

In particular, we denote as BVAR-BGR the model of Banbura et al. (2010) who optimize the

Minnesota shrinkage hyperparameter using a grid, while we denote as BVAR-GLP the model

of Giannone et al. (2015) who introduce a hierarchical prior on the same Minnesota shrinkage

hyperparameter and derive its posterior update formula.14 As a representative of

simulation-based hierarchical shrinkage, we consider the stochastic restrictions search

algorithm of George et al. (2008), which we denote as SSVS. This algorithm is based on a

mixture shrinkage prior, similar to the Spike-and-Slab prior we introduced in Section 3.

Finally, we use a dynamic factor model (denoted DFM), and a factor augmented VAR

(denoted FAVAR); see Stock and Watson (2002) and Bernanke et al. (2005).

14Both the BVAR-BGR and BVAR-GLP approaches approximate inference using a natural conjugate prior
which, as explained in the Introduction, has the disadvantage of symmetry across VAR equations, but the big
advantage of leading to analytical expressions for the posterior moments of the VAR coefficients.
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For the sake of comparability, whenever possible, we use the same exact prior settings.

In particular, all Bayesian VAR models (including our three hierarchical prior and the SSVS)

feature the same Minnesota-based prior moments, which we write as

β
ij

=

{
0.9 if own first lag
0 otherwise

, V βij =


1
l2ij

if own lags

ψ×σ̂2
i

l2ij×σ̂2
k

otherwise
, (30)

where i = 1, ..., n, j = 2, ..., np + 1, σ̂2i (σ̂2k) is the OLS estimate of the variance of an AR(p)

model on yit (ykt), lij = bj/ic is the lag-length associated with the coefficient βij in the VAR,

and ψ is a hyperparameter that allows coefficients of variable k showing up in VAR equation i

(i 6= k) to shrink differently than own coefficients (k denotes the variable that the βij coefficient

belongs to, i.e. k = j−n (lij − 1)).15,16 Next, note that both in the BVAR-BGR and BVAR-GLP

models the shrinkage intensity is the same across all VAR coefficients i.e., using the notation

in (24), λ2ij = λ2, so these two priors do not allow for adaptive shrinkage. In addition, in the

BVAR-BGR case we follow Banbura et al. (2010) and use a wide grid of possible λ2 values, while

in the BVAR-GLP case the choice of the optimal shrinkage intensity is fully automatic.17 In

contrast, the SSVS prior of George et al. (2008) and our three hierarchical priors, N-J, SNS and

N-G, do allow separate shrinkage intensities λ2ij . The other shrinkage hyperparameter ψ is set

in all models to be a function of the VAR size, with ψ = 0.001 for the medium and large VARs,

and ψ = 0.0001 for the X-large VAR (note that the BVAR-BGR and BVAR-GLP models require

ψ = 1). The remaining prior settings for the SSVS SNS, N-J, and N-G priors are: π0 = 0.1,

that is, our prior expectation is that only 10% of VAR coefficients are non-zero; c1 = 0.1, and

c1 = 2. As for the prior hyperparameters specific to the SSVS we also set, using notation from

George et al. (2008), τ0 = κ0 = 0.001 and τ1 = κ1 = 10. Finally, the DFM and FAVAR are

estimated using principal components of the factors and a non-informative prior. We use the

Bayesian information criterion (BIC) to select the optimal number of factors (minimum allowed

is 1 and maximum is b
√
nc, with n the VAR size) and the optimal number of lags (ranging from

one to five).

15We denote with bxc the floor of x, i.e. the largest integer less than or equal to x.
16Both the intercepts and the elements of Φ are left unrestricted with flat and uninformative priors, i.e. β

ij
= 0

and V βij = 10, i = 1, ..., n, j = 1, np+ 2, ..., ki.
17The BVAR-GLP approach allows alternative prior variants, such as the sum-of-coefficients prior. We have

estimated a number of these variants and, with the exception of the sum-of-coefficients prior, by and large the
results do not change significantly. As expected with the stationary data we use, the sum-of-coefficients prior
does not work particularly well.
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6.2 Measuring predictive accuracy

We use the first twenty five years of data, 1959:Q3–1984:Q4, to obtain initial parameter estimates

for all models, which are then used to predict outcomes from 1985:Q1 (h = 1) to 1985:Q4 (h = 4).

The next period, we include data for 1985:Q1 in the estimation sample, and use the resulting

estimates to predict the outcomes from 1985:Q2 to 1986:Q1. We proceed recursively in this

fashion until 2015:Q4, thus generating a time series of point and density forecasts for each

forecast horizon h, with h = 1, ..., 4.18

Next, for each of the seven key variables listed above we summarize the precision of the

h-step-ahead point forecasts for model i, relative to that from a benchmark VAR(p∗), by means

of the ratio of MSFEs:

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

, (31)

where the benchmark VAR(p∗) has flat prior and is estimated using OLS, p∗ denotes the

largest lag length that can be estimated in a VAR with OLS and the data at hand, t and t

denote the start and end of the out-of-sample period, and e2i,j,τ+h and e2bcmk,j,τ+h are the

squared forecast errors of variable j at time τ and forecast horizon h associated with model i

(i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-GLP,SSVS,N-J,SNS,N-G}) and the VAR(p∗) model,

respectively.19 The point forecasts used to compute the forecast errors are obtained by

averaging over the draws from the various models’ h-step-ahead predictive densities. Values of

MSFEijh below one suggest that model i produces more accurate point forecasts than the

VAR(p∗) benchmark for variable j and forecast horizon h.

We also assess the accuracy of the point forecasts of the various methods using the

multivariate loss function of Christoffersen and Diebold (1998). Specifically, we compute the

ratio between the multivariate weighted mean squared forecast error (WMSFE) of model i and

the WMSFE of the benchmark VAR(p∗) model as follows:

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h
, (32)

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
are time

18Note that when h > 1, point forecasts are iterated and predictive simulation is used to produce the predictive
densities.

19That is, p = 5 for the medium VAR, p = 2 for the large VAR, and p = 1 for the X-large VAR.

21



τ + h weighted forecast errors of model i and the benchmark model, ei,τ+h and ebcmk,τ+h are

either the (3× 1) or the (7× 1) vector of forecast errors for the key series we focus on, and W

is either a (3× 3) or a (7× 7) matrix of weights. Following Carriero et al. (2011), we set the

matrix W to be a diagonal matrix featuring on the diagonal the inverse of the variances of the

series to be forecast.

As for the quality of the density forecasts, we follow Geweke and Amisano (2010) and compute

the average log predictive likelihood differential between model i and the VAR(p∗) benchmark,

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) , (33)

where LPLi,j,τ+h (LPLbcmk,j,τ+h) denotes model i’s (benchmark’s) log predictive score of

variable j, computed at time τ + h, i.e., the log of the h-step-ahead predictive density

evaluated at the outcome. Positive values of ALPLijh indicate that for variable j and forecast

horizon h on average model i produces more accurate density forecasts than the benchmark

model.

Finally, in order to test the statistical significance of differences in point and density forecasts,

we consider pairwise tests of equal predictive accuracy (henceforth, EPA; Diebold and Mariano,

1995; West, 1996) in terms of MSFE, WMSFE, and ALPL. All EPA tests we conduct are based

on a two sided test with the null hypothesis being the VAR(p∗) benchmark. We use standard

normal critical values. Based on simulation evidence in Clark and McCracken (2013), when

computing the variance estimator which enters the test statistic we rely on serial correlation

robust standard errors, and incorporate the finite sample correction due to Harvey et al. (1997).

In the tables, we use ***, ** and * to denote results which are significant at the 1%, 5% and

10% levels, respectively, in favor of the model listed at the top of each column.

6.3 Forecasting results

We now present results on the short-term forecasting performance of the various methods

described above, based on the model sizes and forecast metrics outlined in the previous

subsections. Table 2 shows relative WMSFE statistics using all seven series of interest (right

panel), as well as a smaller subset comprising three key variables (left panel), namely GDP,

GDPDEFL, and FEDFUNDS. We find that, for both sets of variables and across all three
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VAR dimensions, the hierarchical Spike-and-Slab (SNS) and Normal-Gamma (N-G) priors

clearly dominate all other methods. As we saw in Figure 1, these two priors are very closely

related. It is therefore not surprising to see that the forecasts implied by both priors are highly

correlated, as indicated by their WMSFE values. Interestingly, the forecasts implied by the

hierarchical Normal-Jeffreys (N-J) prior appear to be somewhat less accurate, even though in

many cases they end only very slightly below the N-G and SNS ones. Overall, for all three

hierarchical priors the forecast gains are quite substantial compared to the benchmark VAR

model, exceeding 50% improvements in terms of WMSFE for a number of horizons. Gains

relative to alternative methods are also quite large, in several instances achieving

improvements of 20% or more over the two BVAR methods, and 10% or more over the two

factor-based methods. Another indication that the adaptive shrinkage imposed by the

proposed hierarchical priors works well is that forecast performance improves as the VAR size

increases (this pattern is particularly clear at horizons h = 1, 2). Finally, as we move from the

medium to the large and to the X-large VARs, for most of the alternative BVAR and factor

methods, the WMSFEs tend to become larger implying larger estimation error resulting from

over-parametrization and their reduced efficiency in shrinking irrelevant coefficients. All in all,

the point-forecast accuracy of the three hierarchical priors proposed in this paper is excellent.

Table 3, Table 4 and Table 5 expand the analysis of the point forecast performance to each

of the seven series of interest, separately for each of the three VAR sizes. As it was the case

with the WMSFE metrics, in the vast majority of cases the three hierarchical priors dominate,

with improvements for some of the individual variables that are at times quite substantial. For

example, for the FEDFUNDS series the improvements reach 70% (relative to the benchmark

VAR). Also, in a few cases the SSVS method outperforms all the alternatives, especially in the

case of the CPIAUCSL and GDPDEFL variables. Finally, it appears that in the large and X-

large cases the DFM and FAVAR methods lead the way for some variables, especially at h = 3

and at h = 4, but overall their MSFEs are not significantly different from the benchmark, as

measured by the Diebold-Mariano statistic.

Table 6, Table 7, and Table 8 shed lights on the quality of the density forecasts, by reporting

averages of log predictive likelihoods (ALPLs) for all three VAR sizes, separately for each of
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the seven variables of interest and the four forecast horizons. Results appear more mixed in this

case, with no single method emerging as a clear winner. In particular, the three hierarchical

priors appear to work particularly well for the PAYEMS and GS10 series, with improvements

over the benchmark VAR method that in the latter case are often statistically significant. On

the other hand, the BVAR-GLP method performs best with the GDPDEFL series, while the

BVAR-BGR approach tends to work particularly well with the FEDFUNDS series. Overall, the

fact that there is no clear winner when looking at the accuracy of the density forecasts should

not come as a surprise, as all methods considered, including the benchmark VAR, do not differ

in their treatment of the diagonal elements of Ω in (21). Still, it is reassuring to find that the

improvements in point forecasts we observed in Table 3 through Table 5 for the three hierarchical

priors are not accompanied by any obvious deterioration in the quality of the density forecasts.

7 Structural VARs and impulse response analysis

The excellent forecast performance of our methodology is in line with a vast literature in

statistics that praises the use of hierarchical priors for providing successful regularized

estimation. As explained in Section 2, we have paired such priors with a fast approximate

procedure that provides as output a joint parameter posterior p (β|y) under the assumption

that all the elements of the vector β are a-posteriori uncorrelated. This approximation appears

to be quite satisfactory in the high-dimensional forecasting application we have considered,

where the final outcome of interest is simply a set of predictions for some economic variables of

interest.

In addition to forecasting, VARs are also used regularly to identify structural shocks and

assess the transmission mechanisms of the macro-economy through impulse response analysis

and historical decompositions. In these cases, the assumption of a-posteriori independence may

hinder the ability of the economist to provide reliable policy recommendations. In this section,

we present a simple modification of our algorithm that is better suited for structural analysis.

In order to demonstrate this procedure, we follow papers such as Giannone et al. (2015) and

generate 500 artificial datasets of T = 216 quarters from a large-scale dynamic stochastic general

equilibrium (DSGE) model. The model we use is an extension of Görtz and Tsoukalas (2017) and
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Görtz et al. (2016), and focuses on sectoral total factor productivity (TFP) shocks and financial

frictions.20 Among all possible sectoral and aggregate variables that this model generates, we

focus only on the aggregate ones, to stay consistent with the bulk of the news shock literature.21

In particular, we follow Barsky and Sims (2011) and use TFP, real GDP, consumption, and hours

as our four variables of interest; in addition, to better identify news shocks, we include three

additional series from the DSGE model, namely inflation, interest rate spread (the difference

between long-term and short-term interest rates), and equity prices.22 Finally, as the news

shocks are not directly observed in a VAR setting, we rely on the identification scheme of Forni

et al. (2014) to extract them.23

For each of the 500 datasets, we use the artificial data on the seven variables listed above to

estimate a VAR with flat priors and a hierarchical prior BVAR. In particular, to estimate the

latter model we rely on a simple two-stage procedure. In the first step of this procedure, we

use the estimation algorithm described in Section 4 along with the hierarchical Spike-and-Slab

prior to obtain posterior inclusion probabilities π̂ij for each of the VAR coefficients. Next, in

the second step, we insert the restrictions implied by the posterior inclusion probabilities in a

BVAR, which is estimated using an independent Normal-Wishart prior.24

Figure 6 plots the DSGE theoretical impulse responses to a productivity news shock, along

with the average across the 500 replications of the median impulse responses for the flat prior

(VAR) and our hierarchical prior (BVAR).25 In general, both the VAR and BVAR models seem

20More specifically, we generate the artificial data using the default parameter settings that Görtz et al. (2016)
use when financial frictions are present.

21See Beaudry and Portier (2013) for an excellent review of empirical studies on news and business cycles.
22Forni and Gambetti (2014) have shown that many of the smaller VARs considered in this literature are

non-fundamental, meaning that they will not recover news shocks correctly. On the other hand, Beaudry et al.
(2015) have argued that even non-fundamental VARs can correctly recover the responses of TFP to news shock.
Regardless of this, larger information sets are still needed in order to identify correctly the remaining responses
of interest to policy-makers, namely, output, consumption and hours.

23The identification scheme of Forni et al. (2014) relies on a combination of long and short-run restrictions on
TFP. The alternative identification schemes proposed in Barsky and Sims (2011) and Francis et al. (2014) produce
identical results.

24In particular, we start from (23) and rewrite the VAR in (21) in its SUR form. Using notation from Koop

and Korobilis (2010), we rewrite the reduced-form VAR in (21) as Y = X̃B + V where Y = (y′1, ...,y
′
n)
′

and

V = (v′1, ...,v
′
n)
′

are Tn×1 vectors, while X̃ is a Tn×K block-diagonal matrix obtained by stacking together the

T × ki matrices X̃1,...,X̃n that incorporate the constraints implied by the estimated PIPs in (19). The elements

in the generic matrix X̃i (i = 1, ..., n), in turn, are computed by multiplying each row of Xi by π̂i, the ki × 1

vector of PIPs estimated from the VAR’s i-th equation, i.e. X̃i,t = Xi,t ◦ π̂′i, where ◦ denotes the Hadamard
product, and t = 1, ..., T .

25Interestingly, the shape of the responses of output and consumption have a distinct double-hump shape. This
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to capture fairly well the responses of output, consumption and hours. On the other hand,

news shock in the DSGE model are anticipated 12 quarters ahead, therefore the response of

TFP is zero for the first 12 periods. Such feature is generally harder to capture with a VAR or

BVAR. Nevertheless, the empirical responses of TFP of both models are still quite reasonable,

and in line with the VAR estimates reported elsewhere (Barsky and Sims, 2011). Next, Figure 7

provides a more accurate assessment of the differences in the estimated impulse responses. For

each of the 500 replications, we compute the difference between the theoretical DSGE response

and the estimated VAR and BVAR median responses, across the seven variables and the 40

horizons. Then, for each variable and horizon, we take the average of the squared errors across

replications (MSE). Figure 7 plots the ratio between the MSE of the VAR with flat priors and

the MSE of the hierarchical BVAR. As it can be seen from the figure, for the vast majority of

periods the MSE ratios are higher than one, implying that the two-step BVAR procedure based

on the hierarchical Spike-and-Slab prior generates more accurate responses than the flat prior

VAR.

8 Conclusions

We have introduced a novel methodology for estimating BVARs which features a number of

desirable properties, including scalability, flexibility, and computational efficiency. We

exploited the flexibility of this novel approach to study empirically the benefits of a wide class

of hierarchical shrinkage priors that lead to individualized adaptive shrinkage on the VAR

coefficients. Thanks to the estimation method we introduced, we are able to derive analytical

expressions for the marginal posteriors implied by three popular cases of hierarchical priors,

namely Normal-Jeffreys, Spike-and-Slab, and Normal-Gamma. Our approach works extremely

well with BVARs of both medium and large dimensions, delivering analytical approximations

to the marginal posterior distributions of the BVAR coefficients that are very accurate. In

addition, our proposed algorithm for posterior inference is multiple times faster than existing

Bayesian VAR methods that rely on simulation methods. We implement a thorough Monte

Carlo analysis to quantify the benefits of our approach, and find that it can recover very

is the direct consequence of working with a model with financial intermediation; see Figure 10 of Görtz et al.
(2016) for more details.
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accurately the underlying VAR coefficients. We also demonstrate, using an extensive

forecasting application, the benefits of our adaptive shrinkage procedure in preventing

over-fitting of large VARs and providing excellent forecasting performance. Finally, we

demonstrate using a simulated numerical example with artificial data extracted from a large

structural macroeconomic model, that our algorithm can be useful also in recovering structural

impulse responses.
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Görtz, C. and J. D. Tsoukalas (2017): “News and Financial Intermediation in Aggregate

Fluctuations,” The Review of Economics and Statistics, 99, 514–530.
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Figures and Tables

Figure 1. Histograms of hierarhical priors

Top left panel: an example of a Normal prior for βj in one dimension, where βj ∼ N
(

0, V βj

)
, and V βj = 10. Top

right panel: an example of a Spike-and-Slab prior for βj in one dimension, where βj ∼ (1− λj) δ0 +λjN
(

0, V βj

)
,

λj ∼ Bernoulli (π0), and π0 = 0.5. Bottom panels: two examples of a hierarchical Normal/Gamma prior for βj
in one dimension, where the hyperparameter λ2

j has been integrated out, i.e. p (βj) =
∫
p
(
βj |λ2

j

)
p
(
λ2
j

)
dλ2

j , with

βj |λ2
j ∼ N

(
0, λ2

jV βj

)
and λ2

j ∼ G (c1, c2). In the bottom left panel, we set c1 = 1 c2 = 2, while in the bottom

right panel we have c1 = 0.1 c2 = 2.
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Figure 2. Monte Carlo simulation - Shrinkage intensity, Normal/Jeffreys prior

The top three panels plot the empirical distribution of the average estimated shrinkage intensity λ =
1
K

∑n
i=1

∑ki
j=1 λ̂ij for a small (n = 3), medium (n = 7), and large (n = 20) VAR(p), averaged over all VAR

coefficients. K =
∑n
i=1 ki denotes the total number of VAR coefficients, including the covariance terms in Φ, and

ki = np+ i. Results are based on our adaptive shrinkage procedure and the Normal/Jeffreys prior. The bottom
three panels plot the average shrinkage intensity estimated by our adaptive procedure, broken down according to
whether the corresponding VAR coefficients in the simulated data are equal to zero (red bars) or not (blue bars).
All empirical distributions are obtained by simulating 1, 000 VAR(p) of sample size T = 150 and lag length p = 2.
See Section 5 for additional details on the design of the Monte Carlo simulation.
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Figure 3. Monte Carlo simulation - Shrinkage intensity, Normal/Gamma prior

The top three panels plot the empirical distribution of the average estimated shrinkage intensity λ =
1
K

∑n
i=1

∑ki
j=1 λ̂ij for a small (n = 3), medium (n = 7), and large (n = 20) VAR(p), averaged over all VAR

coefficients. K =
∑n
i=1 ki denotes the total number of VAR coefficients, including the covariance terms in Φ, and

ki = np+ i. Results are based on our adaptive shrinkage procedure and the Normal/Gamma prior. The bottom
three panels plot the average shrinkage intensity estimated by our adaptive procedure, broken down according to
whether the corresponding VAR coefficients in the simulated data are equal to zero (red bars) or not (blue bars).
All empirical distributions are obtained by simulating 1, 000 VAR(p) of sample size T = 150 and lag length p = 2.
See Section 5 for additional details on the design of the Monte Carlo simulation.
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Figure 4. Monte Carlo simulation - Posterior Inclusion Probabilities (PIPs)

The top three panels of this figure plot the empirical distribution of the average posterior inclusion probability
(PIP) obtained using the George et al. (2008) SSVS approach for a small (n = 3), medium (n = 7), and large
(n = 20) VAR(p), and broken down according to whether the corresponding VAR coefficients in the simulated
data are equal to zero (red bars) or not (blue bars). The bottom three panels plot the analogous empirical
distributions of the averaged PIPs estimated using our adaptive shrinkage procedure with the Spike-and-Slab
prior. All empirical distributions are obtained by simulating 1, 000 VAR(p) of sample size T = 150 and lag length
p = 2. See Section 5 for additional details on the design of the Monte Carlo simulation.
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Figure 5. Monte Carlo simulation - Mean Absolute Deviations
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This figure reports box plots for the empirical distributions of the Mean Absolute Deviations (MAD), obtained
from estimating a VAR(p) with OLS, a BVAR using the Giannone et al. (2015) (BVAR-GLP), the George et al.
(2008) SSVS approach, and our adaptive shrinkage procedure with Normal/Jeffreys, Normal/Gamma, and Spike-
and-Slab priors. These empirical distributions are obtained by simulating 1, 000 VAR(p) of sample size T = 150
and lag length p = 2. For each of the approaches listed and each of the 1,000 simulations we compute the Mean
Absolute Deviation (MAD), defined as

MAD(r,s) =
1

K

n∑
i=1

ki∑
j=1

∣∣∣β(r)
ij − β̂

(r,s)
ij

∣∣∣ ,
where s denotes the method used, r = 1, ..., 1, 000 keeps track of the MC simulations, K =

∑n
i=1 ki denotes

the total number of lag coefficients in the VAR, β
(r)
ij is the true DGP coefficient from the r-th simulation, and

β̂
(r,s)
ij denotes the (posterior mean of the) corresponding estimate according to method s. Results are reported

separately for small (n = 3), medium (n = 7), and large (n = 20) VARs.
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Figure 6. Impulse responses on simulated data
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This figure reports the impulse responses to a productivity news shock in the DSGE model used to generate the
data (solid line), and the median across Monte Carlo replications of the BVAR (dashed line) and the VAR (dotted
line) impulse responses.
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Figure 7. Ratio of MSE: VAR versus BVAR
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This figure reports the ratio of the MSE of the VAR over the MSE of the BVAR. Values larger than one indicate
that the MSE of the VAR is larger than that of the BVAR.
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Table 1. Computing time (seconds) per Monte Carlo iteration

CPU time (in seconds)

Method
VAR size

Small Medium Large
BVAR-GLP 0.043 0.094 0.949
SSVS 0.469 2.624 52.247
Adaptive Normal/Jeffreys prior 0.022 0.024 0.023
Adaptive Spike-and-Slab prior 0.020 0.024 0.023
Adaptive Normal/Gamma prior 0.063 0.074 0.071

This table reports the average CPU time required to complete one iteration of the Monte Carlo simulation. In
each iteration of the Monte Carlo, we estimate a VAR(p) of sample size T = 150 and lag length p = 2 with a
BVAR using the Giannone et al. (2015) method (BVAR-GLP), the George et al. (2008) SSVS approach, and our
adaptive shrinkage procedure with Normal/Jeffreys, Spike-and-Slab, and Normal/Gamma priors. The reference
machine is a 64 bit Windows 7-based PC with a 3.4 Ghz Quad-Core Intel i7-3770 CPU with 16GB DDR3 RAM
and running MATLAB R2017a. See Section 5 for additional details on the design of the Monte Carlo simulation.
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Table 3. Out-of-sample point forecast performance, Medium VAR

Variable DFM BVAR-BGR BVAR-GLP SSVS N-J SNS N-G

h = 1
PAYEMS 0.882 0.746** 0.738** 1.025 0.706* 0.539** 0.510**
CPIAUCSL 0.983 0.975 0.970 1.056 0.961 0.966 0.945
FEDFUNDS 0.573*** 0.687*** 0.675*** 0.320** 0.294*** 0.328** 0.273**
GDP 0.842 0.761*** 0.767*** 1.297 0.841 0.724** 0.764**
UNRATE 0.786 0.796*** 0.829** 1.002 0.855 0.673* 0.627*
GDPDEFL 0.835* 0.844* 0.834** 1.071 0.778* 0.783* 0.764**
GS10 0.790** 0.810** 0.781** 0.676*** 0.694*** 0.728** 0.683***

h = 2
PAYEMS 0.670 0.735** 0.721** 0.964 0.733 0.517*** 0.485***
CPIAUCSL 1.004 0.964 0.969 0.963 0.984 0.974 1.034
FEDFUNDS 0.576*** 0.606*** 0.588*** 0.371*** 0.391*** 0.360*** 0.374***
GDP 0.768** 0.742*** 0.768*** 1.021 0.862 0.711*** 0.744**
UNRATE 0.797 0.799** 0.809* 1.048 0.905 0.702** 0.665**
GDPDEFL 0.917 0.924 0.875* 0.800* 0.830* 0.822* 0.799*
GS10 0.873 0.879 0.843** 0.820* 0.812* 0.790** 0.810*

h = 3
PAYEMS 0.692 0.753** 0.744* 0.895 0.796 0.576*** 0.542***
CPIAUCSL 1.043 0.976 0.965 0.929 1.003 0.966 0.951
FEDFUNDS 0.594*** 0.643*** 0.661*** 0.516*** 0.512*** 0.496*** 0.524***
GDP 0.824* 0.775*** 0.797*** 0.928 0.822* 0.703*** 0.741**
UNRATE 0.765* 0.807** 0.799* 0.766 0.871 0.681** 0.659**
GDPDEFL 0.908 0.934 0.890 0.829 0.875 0.850 0.846
GS10 0.856* 0.885 0.856** 0.852 0.861 0.831** 0.836**

h = 4
PAYEMS 0.695* 0.777* 0.772* 0.789 0.819 0.617** 0.587**
CPIAUCSL 1.016 1.002 1.002 1.009 1.041 1.033 1.020
FEDFUNDS 0.481*** 0.610*** 0.601*** 0.462*** 0.446*** 0.452*** 0.455***
GDP 0.915 0.804*** 0.847** 0.962 0.865 0.761*** 0.803**
UNRATE 0.736 0.844 0.846 0.694* 0.839 0.703* 0.675**
GDPDEFL 0.862** 0.923 0.883** 0.842** 0.874** 0.860** 0.857**
GS10 0.909 0.956 0.934 0.937 0.924 0.904 0.917

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p) for the
medium size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p = 5, e2i,j,τ+h and e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and

forecast horizon h generated by model i and the VAR(p) model, respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM, BVAR-BGR, BVAR-GLP, SSVS, N-J, SNS, N-G}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 4. Out-of-sample point forecast performance, Large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP SSVS N-J SNS N-G

h = 1
PAYEMS 1.225 0.587*** 0.661** 0.643*** 0.870 0.525** 0.454** 0.458***
CPIAUCSL 1.286 1.095 1.016 0.955 1.169 1.060 0.999 0.986
FEDFUNDS 0.473*** 0.468*** 0.675** 0.671** 0.315*** 0.325*** 0.307*** 0.271***
GDP 1.026 0.686 0.720* 0.661* 1.317 0.592** 0.593* 0.621*
UNRATE 0.770** 0.744** 0.730*** 0.798** 1.464 0.689* 0.592** 0.584***
GDPDEFL 0.607*** 0.714** 0.747*** 0.691*** 0.832 0.632*** 0.652*** 0.639***
GS10 0.775** 0.721** 0.818** 0.700*** 0.652*** 0.662*** 0.687*** 0.639***

h = 2
PAYEMS 0.890 0.625*** 0.879 0.875 0.859 0.726* 0.555** 0.491***
CPIAUCSL 0.818* 0.777** 0.766** 0.787*** 0.745** 0.823* 0.757** 0.753**
FEDFUNDS 0.422*** 0.304*** 0.659*** 0.722** 0.332*** 0.472*** 0.325*** 0.320***
GDP 1.078 0.856 0.930 0.955 0.991 0.826 0.694* 0.700
UNRATE 0.700*** 0.664*** 0.844** 0.874 0.815 0.843 0.673** 0.625***
GDPDEFL 0.698*** 0.784** 0.793* 0.699*** 0.691*** 0.746** 0.689*** 0.700***
GS10 0.688*** 0.616*** 0.781** 0.753** 0.616*** 0.671*** 0.609*** 0.620***

h = 3
PAYEMS 0.938 0.754** 1.005 1.023 0.942 1.010 0.744 0.634***
CPIAUCSL 0.807 0.782* 0.824** 0.842** 0.780* 0.863** 0.807** 0.797*
FEDFUNDS 0.509** 0.454** 0.641** 0.689* 0.463** 0.631 0.445** 0.461**
GDP 1.016 0.901 0.943 0.983 1.021 0.919 0.743* 0.768
UNRATE 0.812 0.826 0.998 1.017 0.948 1.192 0.879 0.813
GDPDEFL 0.780** 0.764** 0.849* 0.768** 0.744** 0.836* 0.754** 0.752**
GS10 0.783*** 0.753*** 0.864 0.891* 0.759*** 0.822** 0.763** 0.758***

h = 4
PAYEMS 0.860 0.768** 0.996 1.067 0.873 1.065 0.824 0.697**
CPIAUCSL 0.868* 0.876 0.885 0.878* 0.900 0.917 0.899 0.895
FEDFUNDS 0.520** 0.541** 0.700** 0.657*** 0.520** 0.710 0.511** 0.526**
GDP 1.178 1.077 1.036 1.122 1.168 1.107 0.905 0.945
UNRATE 0.806* 0.844 1.025 1.089 0.849 1.268 0.920 0.821*
GDPDEFL 0.928 0.947 0.997 0.952 0.938 1.051 0.973 0.956
GS10 0.896 0.895 0.975 0.955 0.888* 0.966 0.891 0.886*

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p) for the large
size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p = 2, e2i,j,τ+h and e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the VAR(p) model, respectively. t and t denote the start and

end of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, SSVS, N-J, SNS, N-G}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 5. Out-of-sample point forecast performance, X-large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP SSVS N-J SNS N-G

h = 1
PAYEMS 1.092 0.560*** 0.612*** 0.555*** 0.741 0.516*** 0.484*** 0.516***
CPIAUCSL 1.317 1.091 0.994 0.954 1.245 0.946 0.980 0.975
FEDFUNDS 0.449*** 0.476*** 0.655*** 0.612*** 0.317*** 0.324*** 0.344** 0.280***
GDP 1.022 0.791* 0.750** 0.760* 1.016 0.738* 0.656*** 0.705**
UNRATE 0.638** 0.576*** 0.633*** 0.736* 0.636** 0.636** 0.581*** 0.576***
GDPDEFL 0.627** 0.570*** 0.601*** 0.907 0.531*** 0.488*** 0.511*** 0.504***
GS10 0.766** 0.690*** 0.905 0.736*** 0.687** 0.721** 0.739* 0.685**

h = 2
PAYEMS 0.962 0.604*** 0.792* 0.730*** 0.791 0.621*** 0.524*** 0.541***
CPIAUCSL 0.963 0.961 0.884** 0.924 0.909 0.897 0.879 0.911
FEDFUNDS 0.584*** 0.508*** 0.971 1.106 0.469** 0.511** 0.452*** 0.443***
GDP 1.241 0.964 0.975 0.857 1.163 0.895 0.752* 0.800
UNRATE 0.760* 0.656*** 0.773** 0.839 0.775 0.814 0.700** 0.685**
GDPDEFL 0.706*** 0.794* 0.793* 0.950 0.699*** 0.718** 0.709*** 0.722***
GS10 0.669*** 0.638*** 0.782** 0.750*** 0.584*** 0.598*** 0.591*** 0.594***

h = 3
PAYEMS 0.984 0.728*** 0.893 0.861 0.825 0.777* 0.642*** 0.648***
CPIAUCSL 0.939 0.913 0.959 1.022 0.902 0.975 0.930 0.933
FEDFUNDS 0.604*** 0.581*** 0.762* 0.807* 0.563*** 0.535*** 0.540*** 0.547***
GDP 1.122 0.961 0.922 0.893 1.028 0.905 0.748* 0.799
UNRATE 0.818 0.705*** 0.869 0.923 0.817 0.919 0.776* 0.758**
GDPDEFL 0.885 0.893 0.937 1.111 0.877 0.919 0.881 0.896
GS10 0.781* 0.760*** 0.865 0.869* 0.760** 0.772** 0.763** 0.760**

h = 4
PAYEMS 0.921 0.775** 0.980 0.999 0.801* 0.828 0.694** 0.685**
CPIAUCSL 0.975 0.981 0.992 1.002 0.989 1.017 1.007 0.990
FEDFUNDS 0.642** 0.625*** 0.803 0.724*** 0.616** 0.599*** 0.606** 0.625**
GDP 1.204 1.120 0.969 0.999 1.112 1.001 0.840 0.907
UNRATE 0.797** 0.731*** 0.972 1.055 0.781** 0.907 0.758*** 0.760***
GDPDEFL 1.009 1.011 1.068 1.141 1.023 1.058 1.037 1.017
GS10 0.854 0.836 0.903 0.917 0.837 0.858 0.840 0.836

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p) for the
X-large size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p = 1, e2i,j,τ+h and e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the VAR(p) model, respectively. t and t denote the start and

end of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, SSVS, N-J, SNS, N-G}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 6. Out-of-sample density forecast performance, Medium VAR

Variable DFM BVAR-BGR BVAR-GLP SSVS N-J SNS N-G

h = 1
PAYEMS 0.354 0.474 0.447 0.315 0.529 0.560 0.560
CPIAUCSL 1.675 1.394* 1.061* 2.798 2.072 2.277* 2.576*
FEDFUNDS 0.482 0.371 0.408 0.459 0.588 0.502 0.492
GDP 0.069 0.126** 0.081* -0.087 0.032 0.149 0.139
UNRATE 0.848 0.399 0.487 0.659 0.522 0.823 0.942
GDPDEFL 0.002 0.032 0.044 -0.108 0.022 -0.002 -0.001
GS10 0.235* 0.244* 0.244** 0.274** 0.308** 0.282** 0.311**

h = 2
PAYEMS 0.251 0.311* 0.367* 0.055 0.321 0.414* 0.410*
CPIAUCSL 0.815 0.256 0.877 1.577 0.481 0.891 1.765
FEDFUNDS 0.048 0.132*** 0.127*** 0.055 0.149* 0.101 0.059
GDP 0.073 0.181*** 0.105* 0.023 -0.037 0.113 0.141*
UNRATE 0.115 0.043 0.224* -0.076 -0.202 0.225** 0.201*
GDPDEFL -0.032 0.006 0.024 -0.006 0.027 0.021 0.011
GS10 0.083 0.081 0.099* 0.098 0.125* 0.126* 0.111

h = 3
PAYEMS 0.195 0.112 0.208** -0.351 0.117 0.338* 0.344
CPIAUCSL 1.347 0.969 0.583 2.127 0.294 0.941 1.212
FEDFUNDS -0.027 0.064*** 0.042** -0.032 0.061** 0.027 -0.029
GDP 0.151 0.077 0.154** 0.035 0.016 0.212*** 0.173**
UNRATE 0.520 0.366 0.414 0.479 -0.059 0.280** 0.591
GDPDEFL -0.029 -0.007 0.011 -0.030 0.001 0.009 -0.021
GS10 0.058 0.053 0.067 0.051 0.075 0.083 0.082*

h = 4
PAYEMS 0.435 0.176* 0.194* -0.185 0.246 0.441 0.461
CPIAUCSL 1.209 0.470 0.447 1.042 0.484 0.755 0.968
FEDFUNDS 0.024 0.091*** 0.070** 0.019 0.122*** 0.060 0.028
GDP 0.000 0.166** -0.007 0.056 0.046 0.099* 0.101**
UNRATE 0.466 0.067 0.037 0.510 -0.249 0.155 0.297*
GDPDEFL 0.004 0.011 0.015 -0.024 0.021 0.010 -0.022
GS10 0.017 0.028 0.041 0.018 0.058 0.047 0.043

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p) for the medium VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p = 5, while LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time

τ and forecast horizon h generated by model i and the VAR(p), respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM, BVAR-BGR, BVAR-GLP, SSVS, N-J, SNS, N-G}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the highest ALPL across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 7. Out-of-sample density forecast performance, Large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP SSVS N-J SNS N-G

h = 1
PAYEMS 0.174 0.494 0.472 0.346** 0.321 0.598 0.602 0.557
CPIAUCSL 1.566 0.775 -1.318 -0.014 2.323 0.933 0.936 1.211*
FEDFUNDS 0.252 0.248 0.082 -0.047 0.187 0.348* 0.267 0.255
GDP 0.061 0.159 0.230* 0.282* -0.102 0.282* 0.244 0.192
UNRATE 0.507 0.582 0.260*** 0.196* 0.160 0.670 0.707 0.676
GDPDEFL 0.136 0.124 0.178** 0.200** 0.051 0.188* 0.140 0.140
GS10 0.256** 0.286** 0.222** 0.312*** 0.301** 0.338*** 0.311*** 0.324***

h = 2
PAYEMS 0.052 0.214** 0.030 -0.160 0.049 0.194 0.279** 0.275**
CPIAUCSL 2.072 1.928 0.068 0.028 1.831 1.336 1.368 2.021
FEDFUNDS 0.111* 0.137* 0.174*** 0.119* 0.085 0.154*** 0.163** 0.108
GDP -0.055 0.037 0.010 -0.091 -0.070 0.096 0.147 0.100
UNRATE 0.175 0.221* -0.134 -0.139 0.093 0.167 0.276** 0.315**
GDPDEFL 0.044 0.038 0.084 0.137*** 0.053 0.074 0.074* 0.045
GS10 0.332* 0.372* 0.276 0.295 0.365* 0.346* 0.397* 0.394*

h = 3
PAYEMS -0.035 0.038 -0.362 -0.394 -0.234 -0.001 0.120 0.121
CPIAUCSL 0.752 0.777 -1.464 -0.866 0.790 0.223 -0.065 0.900
FEDFUNDS 0.046 0.046 0.171*** 0.135*** 0.017 0.071 0.081* 0.031
GDP 0.170 0.216 0.057 0.092 0.148 0.254 0.340 0.291
UNRATE 0.006 -0.063 -0.366 -0.263 -0.124 -0.023 -0.101 0.049
GDPDEFL 0.054 0.065* 0.087* 0.119*** 0.060 0.076** 0.070* 0.059
GS10 0.123** 0.141** 0.115** 0.088* 0.137** 0.123** 0.143** 0.150**

h = 4
PAYEMS -0.026 0.059 -0.697 -0.864 -0.336 -0.023 0.087 0.105
CPIAUCSL 0.663 0.333 -0.753 -0.873 0.681 0.549 0.380 0.437
FEDFUNDS 0.042 0.040 0.178*** 0.154*** 0.015 0.062 0.086** 0.032
GDP -0.110 -0.008 -0.375 -0.117 -0.042 -0.048 0.115 0.058
UNRATE 0.016 0.092 -0.703 -0.439 -0.042 -0.066 0.072 0.043
GDPDEFL 0.004 0.000 0.050 0.069*** -0.009 0.004 0.010 -0.018
GS10 0.035 0.039 0.024 0.045* 0.037 0.035 0.054** 0.059**

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p) for the large VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p = 2, while LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time

τ and forecast horizon h generated by model i and the VAR(p), respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, SSVS, N-J, SNS, N-G},
j ∈ {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts

are generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1985:Q1 and ending in 2015:Q4. Bold numbers indicate the highest ALPL across all models for a given variable-

forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1%

level.
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Table 8. Out-of-sample density forecast performance, X-large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP SSVS N-J SNS N-G

h = 1
PAYEMS -0.031 0.310** 0.213 0.284** 0.113 0.351*** 0.298** 0.244**
CPIAUCSL 0.867* 0.541 -1.426 -1.663 1.821 0.718* 1.170** 1.045**
FEDFUNDS 0.351 0.367 -0.036 0.115 0.296 0.398 0.333 0.340
GDP 0.113 0.189 0.302*** 0.250* 0.071 0.244** 0.256** 0.246**
UNRATE 0.528* 0.645** 0.477 0.452 0.542* 0.542* 0.528 0.563*
GDPDEFL 0.134* 0.196*** 0.247*** 0.033 0.191** 0.240*** 0.209*** 0.208***
GS10 0.172** 0.208*** 0.016 0.169** 0.190** 0.195** 0.182** 0.200**

h = 2
PAYEMS 0.116 0.327* -0.046 0.212** 0.097 0.350* 0.325* 0.286
CPIAUCSL -0.161 -0.080 -1.554 -2.276 0.669 -0.901 0.408 -0.088
FEDFUNDS 0.029 0.046 0.045 -0.308 0.001 0.073 0.038 0.014
GDP -0.090 0.022 -0.030 -0.078 -0.129 0.071 0.121* -0.028
UNRATE 0.198 0.271* -0.213 -0.020 0.075 0.072 0.223*** 0.211**
GDPDEFL 0.059 0.047 0.106* -0.084 0.071* 0.082** 0.080** 0.058
GS10 0.276*** 0.284*** 0.150 0.170** 0.307*** 0.328*** 0.318*** 0.343***

h = 3
PAYEMS 0.001 0.062 -0.399 -0.522 0.036 0.077 0.147* 0.139
CPIAUCSL 0.202 0.996 -1.582 -2.471 1.284 -0.386 0.103 0.506
FEDFUNDS 0.034 0.031 0.206*** 0.134*** 0.015 0.095*** 0.059** 0.029
GDP 0.052 0.119 -0.013 0.029 0.109 0.146 0.228* 0.211
UNRATE 0.010 -0.050 -0.234 -0.359 -0.010 -0.295 -0.082 -0.194
GDPDEFL -0.004 0.002 0.078* -0.194 0.015 0.016 0.021 0.005
GS10 0.079 0.095** 0.068 0.045 0.093** 0.104** 0.110** 0.115**

h = 4
PAYEMS -0.113 0.008 -0.610 -0.858 -0.051 0.047 0.138 0.056
CPIAUCSL 0.048 -0.247 -1.798 -2.590 0.813 -0.717 -0.643 -0.071
FEDFUNDS 0.038 0.047* 0.220*** 0.162*** 0.025 0.111*** 0.071** 0.046
GDP 0.040 0.138 0.018 0.049 0.106 0.130 0.270 0.120
UNRATE -0.210 -0.060 -0.794 -0.722 0.005 -0.551 -0.231 -0.220
GDPDEFL -0.019 -0.019 0.049* -0.218 -0.016 0.008 -0.011 -0.020
GS10 0.052 0.048 0.067* 0.039 0.047 0.072 0.071 0.072

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p) for the X-large VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p = 1, while LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time

τ and forecast horizon h generated by model i and the VAR(p), respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, SSVS, N-J, SNS, N-G},
j ∈ {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts

are generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1985:Q1 and ending in 2015:Q4. Bold numbers indicate the highest ALPL across all models for a given variable-

forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1%

level.
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Appendix A Technical appendix

In this section, we provide detailed derivations and proofs of all the main results in the paper.

A.1 Derivation of the rotated regression and rotated likelihood

We begin by providing details on the derivation of the rotated regression in equation (3) and

the joint likelihood of the rotated data in (4). Start with the simple univariate linear regression

model in (1), which for convenience we report here

y = Xβ + v, (A.1)

Next, introduce the T × T full-rank rotation matrix Qj =
[
qj |W j

]
where qj = Xj/ ‖Xj‖ and

W j is an arbitrarily chosen T × (T − 1) matrix subject to the constraint W jW
′
j = IT − qjq′j .

Next, rewrite (A.1) as

y = Xjβj +X(−j)β(−j) + v (A.2)

where X(−j) = X \Xj and β(−j) = β \ βj . Proceed by pre-multiplying both LHS and RHS of

(A.2) by Q′j , to obtain

Q′jy = Q′jXjβj +Q′jX(−j)β(−j) +Q′jv, (A.3)

or, using the fact that Qj =
[
qj |W j

]
,[

q′j
W ′

j

]
y =

[
q′j
W ′

j

]
Xjβj +

[
q′j
W ′

j

]
X(−j)β(−j) +

[
q′j
W ′

j

]
v. (A.4)

Now using the definition of qj and the formulas for y∗j and ỹj in (2), we have that[
y∗j
ỹj

]
=

[ (
X ′jXj/ ‖Xj‖

)
W ′

jqj ‖Xj‖

]
βj +

[
q′jX(−j)
W ′

jX(−j)

]
β(−j) +

[
q′jv

W ′
jv

]
, (A.5)

Further simplifications lead to (3), i.e.[
y∗j
ỹj

]
=

[
‖Xj‖βj

0

]
+

[
X∗(−j)β(−j)

X̃(−j)β(−j)

]
+

[
v∗j
ṽj

]
, (A.6)

where we have exploited the following two results:

1.
(
X ′jXj/ ‖Xj‖

)
= ‖Xj‖. This is due to the fact that X ′jXj = ‖Xj‖2;
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2. By definition, W ′
j and qj are orthogonal. They all are columns of the orthogonal matrix

Qj , so by construction W ′
jqj = 0.

Next, to go from (3) to (4), note that E
(
Q′jv

)
= 0 while var

(
Q′jv

)
= σ2QjQ

′
j = σ2IT

which, combined with (A.6), leads to the rotated likelihood in equation (4). �

A.2 Derivation of the rotated conditional likelihood

In this subsection, we provide details on the results in equations (6), (7), and (8). Start by

focusing on the top row of (4), and note that the conditional density p
(
y∗j |β, σ2

)
can be

decomposed as follows

y∗j = ‖Xj‖βj + y+j (A.7)

where

y+j |β(−j), σ
2 ∼ N

(
X∗(−j)β(−j), σ

2
)

(A.8)

Notice that the newly defined p
(
y+j |β(−j), σ

2
)

can be interpreted as essentially the predictive

distribution associated with the auxiliary regression that is defined in the second row of (4).

This leads to the following result,

p
(
y∗j |βj , ỹj

)
= ‖Xj‖βj + p

(
y+j |ỹj

)
= ‖Xj‖βj +

∫ ∫
p
(
y+j |β(−j), σ

2, ỹj

)
p
(
β(−j), σ

2|ỹj
)
dβ(−j)dσ

2
(A.9)

The key to solving (A.9) is to compute the integral in the second row of the equation, which

in turn will depend on the prior distribution adopted for p
(
β(−j), σ

2
)

. As we discussed in

Section 2, for computational tractability we chose to rely on the natural conjugate prior,

β(−j)|σ2 ∼ N
(
β
(−j), σ

2V β(−j)

)
σ2 ∼ IG

(
ψ, d

) (A.10)

It is straightforward to show that the posterior distribution p
(
β(−j), σ

2|ỹj
)

also belongs to the

Normal-Inverse-Gamma (NIG) family, and is given by

β(−j)|σ2, ỹj ∼ N
(
β(−j), σ

2V β(−j)

)
σ2|ỹj ∼ IG

(
ψ(−j), d

) (A.11)
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where d = d+ (T − 1) /2,

V β(−j) =
(
V −1β(−j)

+ X̃
′
(−j)X̃(−j)

)−1
, (A.12)

β(−j) = V β(−j)

(
V −1β(−j)

β
(−j) + X̃

′
(−j)ỹj

)
, (A.13)

and

ψ(−j) = ψ +
1

2

(
ỹ′jỹj + β′

(−j)V
−1
β(−j)

β
(−j) − β

′
(−j)V

−1
β(−j)

β(−j)

)
. (A.14)

Armed with an analytical expression for the posterior p
(
β(−j), σ

2|ỹj
)

, we are now ready to

derive the rotated conditional likelihood:

p
(
y∗j |βj , ỹj

)
= ‖Xj‖βj +

∫ ∫
p
(
y+j |β(−j), σ

2, ỹj

)
p
(
β(−j), σ

2|ỹj
)
dβ(−j)dσ

2

= ‖Xj‖βj +

∫ ∫
N
(
X∗(−j)β(−j), σ

2
)
×

×N
(
β(−j), σ

2V β(−j)

)
IG
(
ψ(−j), d

)
dβ(−j)dσ

2

= ‖Xj‖βj + t2d
(
µj , τ

2
j

)
≈ ‖Xj‖βj +N

(
µj , τ

2
j

)
(A.15)

where

µj = X∗(−j)β(−j) (A.16)

and

τ2j =
ψ(−j)

d

(
1 +X∗(−j)V β(−j)X

∗′
(−j)

)
. (A.17)

This concludes the derivations of equations (6), (7), and (8). �

A.3 Calculation of optimal shrinkage intensity under a Normal-Jeffreys prior

Start with the approximation in (6), which here we slightly rearrange to be

(
y∗j − µj

)
|βj , ỹj ∼ N

(
‖Xj‖βj , τ2j

)
,

and write the Normal-Jeffreys prior as in (9)

βj |λ2j ∼ N
(

0, λ2jV βj

)
(A.18)
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Next, the marginal likelihood p
(
y∗j − µj

∣∣∣λ2j , ỹj) is given by

p
(
y∗j − µj

∣∣λ2j , ỹj) =

∫
p
(
y∗j − µj

∣∣βj , ỹj) p (βj |λ2j) dβj
= N

(
y∗j − µj

∣∣ ‖Xj‖2 λ2jV βj + τ2j

)
.

(A.19)

or, more explicitly,

p
(
y∗j − µj |λ2j , ỹj

)
=

1
√

2π
√
τ2j + ‖Xj‖2 λ2jV βj

× exp

−
(
y∗j − µj

)2
2
(
τ2j + ‖Xj‖2 λ2jV βj

)


To find the λ2j that maximizes p
(
y∗j − µj

)
|λ2j , ỹj , take the log and only focus on the terms that

involve λ2j :

ln p
(
y∗j − µj |λ2j , ỹj

)
∝ −1

2
ln
(
τ2j + ‖Xj‖2 λ2jV βj

)
− 1

2

(
y∗j − µj

)2(
τ2j + ‖Xj‖2 λ2jV βj

)
Now taking the derivative with respect to λ2i and setting it to zero

∂ ln p
(
y∗j − µj |λ2j , ỹj

)
∂λ2j

= −1

2

‖Xj‖2 V βj(
τ2j + ‖Xj‖2 λ2jV βj

) +
1

2

(
y∗j − µj

)2
‖Xj‖2 V βj(

τ2j + ‖Xj‖2 λ2jV βj

)2 = 0

leads to the solution in (12),

λ̂2j = max

0,

(
y∗j − µj

)2
− τ2j

‖Xj‖2 V βj

 . (A.20)

�

A.4 Derivation of posterior probability of inclusion under a Spike-and-Slab
prior

Start with (18), which for convenience we rewrite here as

π̂j = p
(
λj = 1

∣∣ y∗j , ỹj) =
p
(
y∗j

∣∣∣ λj = 1, ỹj

)
p (λj = 1)

p
(
y∗j

∣∣∣λj = 0, ỹj

)
p (λj = 0) + p

(
y∗j

∣∣∣λj = 1, ỹj

)
p (λj = 1)

(A.21)
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Next, notice that = p (λj = 1) = π0 and p (λj = 0) = 1 − π0. Furthermore, the approximation

in (6) along with the independence between βj and ỹj imply that

p
(
y∗j
∣∣ λj = 1, ỹj

)
≈
∫
p
(
y∗j
∣∣ βj , λj = 1, ỹj

)
p
(
βj |λj = 1, ỹj

)
dβj

≈
∫
p
(
y∗j
∣∣ βj , λj = 1, ỹj

)
p (βj |λj = 1) dβj

∼ N
(
y∗j
∣∣µj , τ2j + ‖Xj‖2 V βj

) (A.22)

while, similarly,

p
(
y∗j
∣∣ λj = 0, ỹj

)
≈
∫
p
(
y∗j
∣∣ βj , λj = 0, ỹj

)
p
(
βj |λj = 0, ỹj

)
dβj

≈
∫
p
(
y∗j
∣∣ βj , λj = 0, ỹj

)
p (βj |λj = 0) dβj

∼ N
(
y∗j
∣∣µj , τ2j)

(A.23)

Plugging (A.22) and (A.23) into (A.21) leads to (19). �

A.5 Triangularization of the VAR

Start from the n-dimensional VAR(p) model in (21), which for convenience we rewrite here

yt = c+A1yt−1 + . . .+Apyt−p + εt, t = 1, ..., T, (A.24)

where yt is an n×1 vector of time series of interest, c is an n×1 vector of intercepts, A1, ...,Ap

are n × n matrices of coefficients on the lagged dependent variables, and εt ∼ N (0,Ω), with

Ω an n × n covariance matrix. Next, following Carriero et al. (2016), decompose the VAR

covariance matrix Ω in (A.24) as Ω = Γ−1Σ
(
Γ−1

)′
, where

Γ−1 =


1 0 ... 0 0

γ2,1 1
. . .

...
...

...
. . .

. . . 0 0
γn−1,1 ... γn−1,n−2 1 0
γn,1 ... γn,n−2 γn,n−1 1

 , (A.25)

and Σ = diag
(
σ21, ..., σ

2
n

)
. Under this decomposition the residuals of the original VAR(p) in

(A.24) can be written using the identity εt = Γ−1Σ1/2ut, with ut ∼ N (0, In), which implies

that the i-th row of this identity is

εi,t = γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t. (A.26)
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As a result, the VAR(p) in equation (A.24) admits the following triangular structure,

y1,t = c1 + a1,·Zt + σ1u1t,

y2,t = c2 + a2,·Zt + γ2,1σ1u1,t + σ2u2,t,

...

yn,t = cn + an,·Zt + γn,1σ1u1,t + ...+ γn,n−1σn−1un−1,t + σnun,t,

(A.27)

where ai,· = [ai,1, ..., ai,np] denotes the vector of coefficients in the i-th VAR equation, and

Zt =
[
y′t−1, ...,y

′
t−p
]′

. As noted by Carriero et al. (2016), the re-parametrization of the VAR(p)

in (A.27) allows for estimation of the system recursively, equation-by-equation.26 For example,

consider the generic equation i, which we rewrite as

yi,t = ci + ai,·Zt + γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t, (A.28)

Provided that all previous i−1 equations have been already estimated, all terms on the right hand

side of (A.28) involving the previous equation error terms can be replaced by their estimated

counterparts. As a result, the full posterior for the VAR parameters
{
c,a,Γ−1,Σ

}
can now be

obtained recursively, one equation at a time.

26It is worth pointing out an important feature that affects all models that rely on the triangularization in
(A.27). If the priors for Γ−1 and Σ are elicited separately, the implied prior for Ω will change when the ordering
of the equations in the VAR changes. As a result, different orderings of the variables in the VAR will lead to
different prior specifications for Ω and potentially different joint posteriors of the BVAR parameters {c,a,Ω}. As
noted by Primiceri (2005), this problem will likely be less severe in the case as it is here in which the elements of
the covariance matrix in Γ−1 do not vary with time, because the likelihood will quickly dominate the prior as the
sample size increases. On this point, see also the estimation algorithms of Smith and Kohn (2002) and George
et al. (2008) and discussions therein.
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Appendix B Data and transformations

Table B.1. List of series

Series id Tcode† Medium Large X-large FRED Description

1 5 X X RPI Real Personal Income
2 5 X X W875RX1 RPI ex. Transfers
3 5 X X DPCERA3M086SBEA Real PCE
4 5 X X CMRMTSPLx Real M&T Sales
5 5 X X RETAILx Retail and Food Services Sales
6 5 X INDPRO IP Index
7 2 X HWI Help-Wanted Index for US
8 2 X HWIURATIO Help Wanted to Unemployed ratio
9 5 X CLF16OV Civilian Labor Force
10 2 X X X UNRATE Civilian Unemployment Rate
11 5 X X X PAYEMS All Employees: Total nonfarm
12 5 X CES0600000007 Hours: Goods-Producing
13 5 X M1SL M1 Money Stock
14 5 X M2SL M2 Money Stock
15 5 X M2REAL Real M2 Money Stock
16 5 X X BUSLOANS Commercial and Industrial Loans
17 5 X X NONREVSL Total Nonrevolving Credit
18 2 X X CONSPI Credit to PI ratio
19 5 X S&P 500 S&P 500
20 5 X S&P: indust S&P Industrial
21 2 X S&P div yield S&P Divident yield
22 5 X S&P PE ratio S&P Price/Earnings ratio
23 2 X X X FEDFUNDS Effective Federal Funds Rate
24 2 X X CP3M 3-Month AA Comm. Paper Rate
25 2 X TB3MS 3-Month T-bill
26 2 X TB6MS 6-Month T-bill
27 2 X GS1 1-Year T-bond
28 2 X GS5 5-Year T-bond
29 2 X X X GS10 10-Year T-bond
30 2 X AAA Aaa Corporate Bond Yield
31 2 X BAA Baa Corporate Bond Yield
32 5 X X EXSZUS Switzerland / U.S. FX Rate
33 5 X X EXJPUS Japan / U.S. FX Rate
34 5 X X EXUSUK U.S. / U.K. FX Rate
35 5 X X EXCAUS Canada / U.S. FX Rate
36 5 X OILPRICEx Crude Oil Prices: WTI
37 6 X X X CPIAUCSL CPI: All Items
38 5 X INVEST Securities in Bank Credit
39 5 X X X GDP Real Gross Domestic Product
40 6 X X X GDPDEFL GDP deflator

† Transformation code. These stand for: 2 - first differences; 5 - first differences of logarithms; 6 - second differences of logarithms

53


	Introduction
	A new Bayesian estimation methodology
	Hierarchical shrinkage priors
	Normal-Jeffreys
	Normal-Gamma
	Spike-and-Slab

	Application to BVAR estimation
	Monte Carlo analysis
	Setup of Monte Carlo experiment
	Results

	Macroeconomic forecasting
	Data, models, and prior settings
	Measuring predictive accuracy
	Forecasting results

	Structural VARs and impulse response analysis
	Conclusions
	Technical appendix
	Derivation of the rotated regression and rotated likelihood
	Derivation of the rotated conditional likelihood
	Calculation of optimal shrinkage intensity under a Normal-Jeffreys prior
	Derivation of posterior probability of inclusion under a Spike-and-Slab prior
	Triangularization of the VAR

	Data and transformations



