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Abstract
It is standard practice in applied work to study the effect of a binary vari-

able (“treatment”) on an outcome of interest using linear models with additive
effects. In this paper I study the interpretation of the ordinary and two-stage
least squares estimands in such models when treatment effects are in fact het-
erogeneous. I show that in both cases the coefficient on treatment is identi-
cal to a convex combination of two other parameters (different for OLS and
2SLS), which can be interpreted as the average treatment effects on the treated
and controls under additional assumptions. Importantly, the OLS and 2SLS
weights on these parameters are inversely related to the proportion of each
group. The more units get treatment, the less weight is placed on the effect
on the treated. What follows, the reliance on these implicit weights can have
serious consequences for applied work. I illustrate some of these issues in
four empirical applications from different fields of economics. I also develop
a weighted least squares correction and simple diagnostic tools that applied
researchers can use to avoid potential biases. In an important special case, my
diagnostics only require the knowledge of the proportion of treated units.
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1 Introduction

Many applied researchers study the effect of a binary variable (“treatment”) on the ex-
pected value of some outcome of interest, holding fixed a vector of other covariates. As
noted by Imbens (2015), despite the availability of a large number of semi- and nonpara-
metric estimators for average treatment effects, applied researchers typically continue to
use conventional regression methods. In particular, it is standard practice in applied work
to use ordinary least squares (OLS) to estimate

y = α + τd + Xβ + u, (1)

where y denotes the outcome, d denotes the binary variable of interest, and X denotes
the row vector of other covariates (control variables); τ is then usually interpreted as
the average treatment effect (ATE). This simple estimation strategy is used in a large
number of applied papers in leading economics journals, as well as in other disciplines.1

Similarly, when applied researchers have access to a vector of instrumental variables (IV)
for d (denoted by Z), it is standard practice to estimate the model in (1) using two-stage
least squares (2SLS). Such an estimation strategy is also widespread in applied work.2

The great appeal of the model in (1) comes from its simplicity (see, e.g., Angrist and
Pischke, 2009). At the same time, however, a large body of evidence demonstrates the
empirical importance of heterogeneity in effects (see, e.g., Heckman, 2001; Bitler, Gelbach,
and Hoynes, 2006, 2008) which is explicitly ruled out by this same model. In this paper,
therefore, I study the interpretation of the OLS and 2SLS estimands in (1) when treatment
effects are in fact heterogeneous. I derive a new theoretical result which demonstrates
that both estimands are identical to the outcome of the following three-step procedure:
in the first step, take the linear projection of d on X (OLS) or the linear projection of
d on X and the first-stage errors (2SLS), which gives the “propensity score” from the

1See, e.g., Black, Smith, Berger, and Noel (2003), Almond, Chay, and Lee (2005), Campbell, Giglio, and
Pathak (2011), Voigtländer and Voth (2012), Alesina, Giuliano, and Nunn (2013), Berger, Easterly, Nunn,
and Satyanath (2013), Frakes (2013), Martinez-Bravo (2014), Aizer, Eli, Ferrie, and Lleras-Muney (2016),
Atkin (2016), Bobonis, Cámara Fuertes, and Schwabe (2016), Das, Holla, Mohpal, and Muralidharan (2016),
Michalopoulos and Papaioannou (2016), and Belenzon, Chatterji, and Daley (2017).

2Following Imbens and Angrist (1994), the 2SLS estimand is usually interpreted as the local average
treatment effect (LATE). In principle, however, such an interpretation is not accurate, because the result
in Imbens and Angrist (1994) applies only to models without covariates (X). For results on models with
covariates, see Angrist and Imbens (1995) and Abadie (2003). For recent applications of this strategy, see
Dinkelman (2011), Dittmar (2011), Parey and Waldinger (2011), Jacob and Ludwig (2012), Maestas, Mullen,
and Strand (2013), Deming, Hastings, Kane, and Staiger (2014), Moser, Voena, and Waldinger (2014), Black,
Sanders, Taylor, and Taylor (2015), Dobbie and Song (2015), Clark and Del Bono (2016), Bettinger, Fox, Loeb,
and Taylor (2017), Lundborg, Plug, and Rasmussen (2017), and many others.
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linear probability model; in the second step, project y on d, the propensity score, and
their interaction—and calculate average partial effects from this model for both groups
of interest (“treated” and “controls”); in the third step, calculate a weighted average of
these two effects—with weights being inversely related to the unconditional probability
that a unit belongs to a given group.3 In consequence, when the proportion of one group
increases, the weight on the effect on this group decreases. I also establish conditions under
which either of these estimation strategies recovers

τ = P (d = 1) · τATC + P (d = 0) · τATT (2)

instead of
τATE = P (d = 1) · τATT + P (d = 0) · τATC, (3)

where τATE denotes the average treatment effect (ATE), τATT denotes the average treat-
ment effect on the treated (ATT), and τATC denotes the average treatment effect on the
controls (ATC); also, P (d = 1) and P (d = 0) denote population proportions of treated
and control units, respectively. As a consequence of the disparity between (2) and (3), in
many empirical applications the ordinary and two-stage least squares estimands might
not be close to any of the average treatment effects of interest.

On the one hand, the implications of this result are necessarily pessimistic. It might
seem sensible to resort to alternative methods which explicitly allow for treatment effect
heterogeneity. On the other hand, it is possible to approach this result from a more prag-
matic perspective. In particular, in this paper I also develop diagnostic tools which can
detect deviations of the OLS/2SLS weights from the pattern which would be consistent
with the chosen target parameter, ATE or ATT. These diagnostics are easy to implement
and interpret. When one of my diagnostics is close to zero, OLS or 2SLS estimation of the
model in (1) is likely to provide a reasonable estimate of the corresponding target param-
eter; if this diagnostic gets closer to one in absolute value, other methods are probably
more appropriate. Interestingly, in an important special case, these diagnostics only de-
pend on the proportion of treated units. When this proportion is close to zero (one), the
OLS/2SLS estimates will be similar to those of the effect on the treated (controls); when
this same proportion is close to 50 percent, the OLS/2SLS estimates will be similar to the
implicit estimates of the average treatment effect.

I also extend my baseline results in several other directions. In particular, I develop
a simple weighted least squares correction which is capable of undoing the OLS/2SLS

3The second and third steps are identical for OLS and 2SLS, with the only difference in the first-step
calculation of the propensity scores.
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weights. This procedure automatically recovers the implicit estimate of the average treat-
ment effect. Also, I discuss the implications of my main result for regression adjustments
to experimental data, fixed effects, and difference-in-differences estimation. Finally, I ex-
plicitly address the common interpretation of the IV estimand as the local average treat-
ment effect, and briefly discuss conditions under which this interpretation might be ac-
curate even in the presence of other covariates.

This paper contributes to a growing field of research in econometrics which studies
weighted average representations of various estimands and estimators.4 My theoreti-
cal results are most closely related to one line of such research, concerning both OLS and
2SLS, which investigates the interpretation of the coefficient on treatment when the model
for covariates is saturated (Angrist and Imbens, 1995; Angrist, 1998; Humphreys, 2009),
i.e. the estimating equation includes a binary variable for each combination of covariate
values (“stratum”). In the case of 2SLS, the first stage also needs to be fully saturated (An-
grist and Imbens, 1995). In this restricted setting, Angrist and Imbens (1995) demonstrate
that the weights underlying two-stage least squares are proportional to the variance of
treatment in each stratum. Angrist (1998) provides an analogous result for ordinary least
squares.5 Humphreys (2009) extends this latter result and shows that the OLS estimand
is bounded by τATT and τATC whenever treatment assignment probabilities are mono-
tonic in stratum-specific effects. What is particularly restrictive, however, is the implicit
requirement of each of these papers that all of the covariates and instruments are discrete,
since otherwise saturation would not be possible.

What sets this paper apart from these previous contributions is its much wider appli-
cability. Most importantly, I relax the saturated model restriction—which is rarely used

4See, e.g., Yitzhaki (1996), Deaton (1997), Angrist (1998), Angrist and Krueger (1999), Humphreys (2009),
Løken, Mogstad, and Wiswall (2012), Solon, Haider, and Wooldridge (2015), and Kato and Sasaki (2017) for
studies of OLS; Imbens and Angrist (1994), Angrist and Imbens (1995), Angrist, Imbens, and Rubin (1996),
Angrist, Graddy, and Imbens (2000), Abadie (2003), Løken et al. (2012), Kolesár (2013), Andrews (2017),
and Evdokimov and Kolesár (2018) for studies of IV methods; Wooldridge (2005), Løken et al. (2012), Cher-
nozhukov, Fernández-Val, Hahn, and Newey (2013), Imai and Kim (2017), and Gibbons, Suárez Serrato, and
Urbancic (2018) for studies of fixed effects; Borusyak and Jaravel (2017), Abraham and Sun (2018), Athey
and Imbens (2018), de Chaisemartin and D’Haultfœuille (2018), Goodman-Bacon (2018), Hull (2018), and
Strezhnev (2018) for studies of difference-in-differences and related methods; and Kato and Sasaki (2017)
for a study of quantile regression. This literature is also related to Heckman and Vytlacil (2005), Heck-
man, Urzua, and Vytlacil (2006), and Heckman and Vytlacil (2007) who provide an interpretation of various
estimands, conditional on X, as weighted averages of marginal treatment effects.

5A similar result for nonsaturated models is derived by Rhodes (2010) and Aronow and Samii (2016).
In both of these papers the OLS estimand is interpreted as a weighted average of individual-level treat-
ment effects. In this paper I provide an alternative representation, in which this estimand is interpreted
as a weighted average of group-specific average treatment effects (τATT and τATC). This representation
makes it much easier to distinguish between applications in which OLS weighting might or might not be
problematic. Indeed, in this paper I develop simple diagnostic tools based on my main result.

4



in applied work—and I do not require the covariates or instruments to be discrete. Also,
instead of focusing on stratum-specific treatment effects, I provide a general weighted
average representation of both the ordinary and two-stage least squares estimands—in
terms of group-specific average treatment effects (τATT and τATC). This formulation is
very attractive—and easier to interpret—because each OLS or 2SLS estimate can now
be expressed as a weighted average of two estimates of τATT and τATC. Moreover, the
weights are also easily estimated—and they are always nonnegative and sum to one.

To illustrate the importance of this result, I also replicate several prominent applied
studies. My starting point is to outline various scenarios that applied researchers are
likely to face in the context of OLS/2SLS estimation and treatment effect heterogeneity.
These scenarios are defined by our parameter of interest (ATE or ATT), the proportion of
treated units, and the amount of heterogeneity. In one scenario, we are only interested in
one of the parameters and my diagnostics suggest that this parameter will be recovered
even if treatment effects are highly heterogeneous. In another scenario, my diagnostics
suggest caution in interpreting the OLS/2SLS estimates but this concern is outweighed
by the small amount of heterogeneity. Next, we are interested in both parameters and my
diagnostics suggest that one of them—but of course not both—is likely to be recovered
by the OLS/2SLS estimates regardless of whether treatment effects are heterogeneous or
not. Finally, my diagnostics might also suggest substantial bias in estimating our target
parameter or parameters in the presence of substantial heterogeneity.

In this paper I present an empirical illustration for each of these scenarios. In partic-
ular, I replicate the analysis of the effects of the National Supported Work (NSW) pro-
gram in Angrist and Pischke (2009); the study of the association of medieval pogroms
with modern anti-Semitism in Voigtländer and Voth (2012); the analysis of the impact of
Catholic schooling on math test scores in Wooldridge (2015); and the study of the long-
run effects of cash transfers in Aizer et al. (2016). These empirical applications confirm the
importance of the theoretical results presented in this paper. In particular, they confirm
the usefulness of my diagnostic methods in distinguishing between cases where OLS or
2SLS estimation of the model in (1) will and will not be problematic.

2 Theory

This section contains the main methodological results of this paper. After presenting a
simple numerical example and introducing the basic concepts, I discuss my main contri-
bution, namely a weighted average representation of the ordinary least squares estimand.
I provide the intuition behind this result, illustrate it graphically, and derive a number of
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useful corollaries. Of particular interest is the development of simple diagnostics for un-
desirable weighting of heterogeneous treatment effects in least squares estimation. These
diagnostics are easy to implement and interpret; in an important special case, their calcu-
lation only requires the knowledge of the proportion of treated units. Finally, I develop
a weighted least squares procedure which can be used to undo the OLS weighting and
I also extend my main result to two-stage least squares. Other theoretical extensions are
relegated toward the end of the paper.

Notation

Throughout this paper, scalar random variables are denoted by lowercase letters and
vectors of random variables are denoted by uppercase letters. In particular, let y de-
note the outcome, let d denote the binary variable of interest (“treatment”), and let X
denote the row vector of other covariates, (x1, . . . , xK). There are two potential out-
comes, y(1) and y(0), but we observe only one of them for each unit, y = y(d) =

y(1) · d + y(0) · (1− d). The usual parameters of interest are τATE = E [y(1)− y(0)],
τATT = E [y(1)− y(0) | d = 1], and τATC = E [y(1)− y(0) | d = 0].

Motivating Example

To illustrate the potential problem with OLS weighting, consider the following example
with a single binary covariate, x. Treatment is unconfounded conditional on x. The re-
searcher regresses y on d and x, ignoring the interaction term d · x. Let P (d = 1) = 96%,
P (x = 1 | d = 1) = 18.75%, and P (x = 1 | d = 0) = 50%. While the proportion of treated
units is rather extreme at 96%, this will help to make the illustration more effective. The
information so far is sufficient to obtain the OLS weights on τ1 = E [y(1)− y(0) | x = 1]
and τ0 = E [y(1)− y(0) | x = 0], as derived by Angrist (1998).6 Indeed, simple algebra
shows that the weight on τ1 (τ0) is 48% (52%). Also, P (x = 1) = 20%. In other words,
the weight on τ1, equal to 48%, is much larger than we would otherwise expect (i.e., 20%),
but the result in Angrist (1998) justifies this by the fact that V (d | x = 1) > V (d | x = 0).
While it is clear that the OLS estimand will be different from τATE, it is not as straightfor-
ward to realize that this difference will be functionally related to P (d = 1).

To see this fact, it is useful to focus on τATT and τATC instead. In practice, these param-
eters, together with τATE, are usually more policy relevant than τ1 and τ0, especially in

6The weight on τ1 is equal to P(x=1)·V(d|x=1)
P(x=0)·V(d|x=0)+P(x=1)·V(d|x=1) and the weight on τ0 is equal to

P(x=0)·V(d|x=0)
P(x=0)·V(d|x=0)+P(x=1)·V(d|x=1) . See also Angrist (1998) and Angrist and Pischke (2009) for more details.
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Table 1: Numerical Example

Weight on τ1 Weight on τ0 Weight on τATT Weight on τATC
Parameter

value
OLS 48% 52% 6.4% 93.6% –0.92
τATE 20% 80% 96% 4% 0.2
τATT 18.75% 81.25% 100% 0% 0.25
τATC 50% 50% 0% 100% –1

Notes: All values reported in this table correspond to the numerical example discussed in the main text. In this ex-
ample, there is a single binary covariate, x. “OLS” is the coefficient on d in the regression of y on d and x. The fol-
lowing information is sufficient to compute all values reported in this table: P (d = 1) = 96%, P (x = 1 | d = 1) =
18.75%, P (x = 1 | d = 0) = 50%, E (y | d = 1, x = 1) = 0, E (y | d = 1, x = 0) = 5, E (y | d = 0, x = 1) = 3, and
E (y | d = 0, x = 0) = 4. Hence, τ1 = E [y(1)− y(0) | x = 1] = −3 and τ0 = E [y(1)− y(0) | x = 0] = 1. The weights on
τj, j = 0, 1, are (i) derived by Angrist (1998) for OLS, (ii) equal to P (x = j) for τATE, (iii) equal to P (x = j | d = 1) for
τATT , and (iv) equal to P (x = j | d = 0) for τATC. The weights on τATT and τATC are (i) derived in this paper for OLS, (ii)
equal to P (d = 1) and P (d = 0), respectively, for τATE, (iii) equal to 100% and 0%, respectively, for τATT , and (iv) equal
to 0% and 100%, respectively, for τATC.

applications with many covariates. Let E (y | d = 1, x = 1) = 0, E (y | d = 1, x = 0) = 5,
E (y | d = 0, x = 1) = 3, and E (y | d = 0, x = 0) = 4. What follows, τ1 = −3 and τ0 = 1,
and hence the OLS estimand, τ, is equal to 48% · −3+ 52% · 1 = −0.92. At the same time,
however, it is straightforward to verify that τATE = 0.2, τATT = 0.25, and τATC = −1. See
also Table 1 for more details. It turns out that the sign of the OLS estimand and the signs
of τATE and τATT are different, even though 96% of the population is treated. Moreover,
if we postulate that the OLS estimand is perhaps a convex combination of τATT and τATC,
we can also write −0.92 = wATT · 0.25 + (1− wATT) · −1, where wATT is the OLS weight
on τATT. Solving for wATT yields wATT = 6.4%. In other words, the OLS weight on the
effect on the treated is very similar to the proportion of control units, 4%. Similarly, the
OLS weight on the effect on the controls is surprisingly large and equal to 93.6%. Ordi-
nary least squares approximately reverses the “natural” weights on τATT and τATC, equal
to proportions of both groups. Table 1 gives a summary of this numerical example.

A crucial point of this paper is that this surprising result of “weight reversal” is not
a coincidence—but instead a feature of OLS estimation. As I demonstrate below, the
intuition from this simple example holds more generally.

Ordinary Least Squares

If L (· | ·) denotes the linear projection, this paper is concerned with the interpretation of
τ in the linear projection of y on d and X,

L (y | 1, d, X) = α + τd + Xβ, (4)

7



when the population linear model is possibly incorrect. Before giving the main theoretical
results of this paper, we need to introduce several definitions. In particular, let

ρ = P (d = 1) (5)

denote the unconditional probability of “treatment” and let

p (X) = L (d | 1, X) = αp + Xβp (6)

denote the “propensity score” from the linear probability model.7 Note that p (X) is the
best linear approximation to the true propensity score. In principle, the specification in
equations (4) and (6) can be arbitrarily flexible, so this linear approximation can be made
very accurate; in fact, equation (4) can be thought of as partially linear, where we poten-
tially include powers and cross-products of original control variables but exclude inter-
actions between d and X.8 It is also useful to note that the Frisch–Waugh theorem (Frisch
and Waugh, 1933) implies that τ = τa, where τa is defined by

L [y | 1, d, p (X)] = αa + τad + γa · p (X) . (7)

In other words, the least squares estimand for the effect of d is the same whether we
project y on d and covariates or on d and the “propensity score.” This equivalence result
will also hold if we replace population parameters with their sample analogues, as is the
case elsewhere in this paper. While the equality of τ and τa might seem trivial, it is often
overlooked and will be useful in proving my main result.

After defining p (X), it is helpful to introduce two linear projections of y on p (X),
separately for d = 1 and d = 0, namely

L [y | 1, p (X)] = α1 + γ1 · p (X) if d = 1 (8)

and also
L [y | 1, p (X)] = α0 + γ0 · p (X) if d = 0. (9)

Note that equations (6), (8), and (9) are definitional. I do not assume that these linear pro-

7Note that this “propensity score” does not need to have any behavioral interpretation. For example,
d can be an attribute, in the sense of Holland (1986), and therefore does not need to constitute a feasible
“treatment” in any “ideal experiment” (Angrist and Pischke, 2009). Although it might be difficult, for
example, to conceptualize the “propensity score” for gender or race, it does not matter for this definition.

8To be precise, I do not need to exclude interactions between d and X to prove my main result. This
exclusion is only illustrative; it simplifies the interpretation of my result and it follows the standard practice
of estimating the model in (1) without interactions.

8



jections correspond to well-specified population models and I do not put any substantial
restrictions on the underlying data-generating process. In fact, it is sufficient for my main
result that the linear projections in (4), (6), (8), and (9) always exist and are unique.

Assumption 1 (i) E(y2) and E(‖X‖2) are finite. (ii) The covariance matrices of X and (d, X)

are nonsingular.

Clearly, Assumption 1 guarantees the existence and uniqueness of the linear projections
in (4) and (6). Additionally, Assumption 2 ensures that the linear projections in (8) and (9)
also exist and are unique.

Assumption 2 V [p (X) | d = 1] and V [p (X) | d = 0] are nonzero, where V (· | ·) denotes the
conditional variance (with respect to E [p (X) | d = j], j = 0, 1).

Assumptions 1 and 2 are generally innocuous, although Assumption 2 rules out a small
number of interesting applications, such as regression adjustments in Bernoulli trials and
completely randomized experiments. In these cases, however, ordinary least squares is
consistent for the average treatment effect under general conditions (see, e.g., Imbens and
Rubin, 2015). Moreover, as we will see later, Assumption 2 can be relaxed to permit either
V [p (X) | d = 1] or V [p (X) | d = 0] to be zero.

The next step is to use the linear projections in (8) and (9) to define the average partial
effect of d as

τAPE = (α1 − α0) + (γ1 − γ0) · E [p (X)] (10)

as well as the average partial effect of d on group j (j = 0, 1) as

τAPE|d=j = (α1 − α0) + (γ1 − γ0) · E [p (X) | d = j] . (11)

Because the linear projection passes through the point of means of all variables, namely
E (y | d = 1) = α1 + γ1 · E [p (X) | d = 1] and E (y | d = 0) = α0 + γ0 · E [p (X) | d = 0],
the average partial effects of d on both groups of interest can also be expressed as

τAPE|d=1 = E (y | d = 1)− {α0 + γ0 · E [p (X) | d = 1]} (12)

and also
τAPE|d=0 = {α1 + γ1 · E [p (X) | d = 0]} − E (y | d = 0) . (13)

9



In other words, we only need the linear projection in (9), and not in (8), to define τAPE|d=1

because we already observe the mean treated outcome of the treated. Similarly, we need
the linear projection in (8), but not in (9), to define τAPE|d=0, as the mean control outcome
is observed for the control units. In either case we need to predict the mean outcomes of
a given subpopulation in the alternative treatment regime. When both linear projections
are well defined, τAPE|d=j is also equivalent to the coefficient on d in the linear projection
of y on d, p (X), and d · {p (X)− E [p (X) | d = j]}.

Finally, if d is unconfounded (conditional on X) and E (d | X), E [y(1) | p (X)], and
E [y(0) | p (X)] are linear, then τAPE, τAPE|d=1, and τAPE|d=0 have a useful interpretation
as τATE, τATT, and τATC, respectively. It should be stressed, however, that the main result
of this paper (Theorem 1) is more general and only requires Assumptions 1 and 2.

Theorem 1 (Weighted Average Interpretation of OLS) Suppose that Assumptions 1 and 2
are satisfied. Then,

τ =
ρ ·V [p (X) | d = 1]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=0

+
(1− ρ) ·V [p (X) | d = 0]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=1.

Henceforth, to simplify notation, I will use w0 to denote ρ·V[p(X)|d=1]
ρ·V[p(X)|d=1]+(1−ρ)·V[p(X)|d=0] and w1 to

denote (1−ρ)·V[p(X)|d=0]
ρ·V[p(X)|d=1]+(1−ρ)·V[p(X)|d=0] .

A proof of Theorem 1 is provided in Appendix A. This theorem shows that τ, the ordi-
nary least squares estimand, can be expressed as a convex combination of τAPE|d=1 and
τAPE|d=0. The definition of τAPE|d=j makes it clear that the OLS estimand is identical to
the outcome of a particular three-step procedure. In the first step, we obtain p (X), i.e. the
“propensity score.” Next, in the second step, we obtain τAPE|d=1 and τAPE|d=0, as in (11),
from two linear projections of y on p (X), separately for d = 1 and d = 0. Finally, in the
third step, we calculate a weighted average of τAPE|d=1 and τAPE|d=0. The weight which

is placed by OLS on τAPE|d=1 is decreasing in V[p(X)|d=1]
V[p(X)|d=0] and ρ and the weight which is

placed on τAPE|d=0 is increasing in V[p(X)|d=1]
V[p(X)|d=0] and ρ.9

9In fact, a more formal treatment of the relationship between ρ and w1 (w0) is necessary to determine
that this relationship is indeed always negative (positive). A proof of this proposition, which additionally
assumes that the population model for d is linear in X, is provided in Appendix B. In this proof, I study
the derivatives of w1 and w0 with respect to the intercept of the propensity score model. Clearly, such an
intercept shift is equivalent to a change in ρ.
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The fact that Theorem 1 only requires the existence and uniqueness of several linear
projections makes this result very general. On the other hand, one possible concern about
this result might be that τAPE|d=1 and τAPE|d=0 do not necessarily correspond to the causal
objects of interest, unless the additional linearity restrictions are satisfied. I address this
issue in detail below. In general, it is possible to decompose the difference between τ and
each causal object of interest into components attributable to (i) these linearity restrictions
and (ii) implicit weights on τAPE|d=1 and τAPE|d=0.

The weighting scheme in Theorem 1 might be seen as surprising: the more units be-
long to group j, the less weight is placed on τAPE|d=j, i.e. the effect on this group. To aid
intuition, recall that an important motivation for using ordinary least squares to estimate
the model in (1) is that the linear projection of y on d and X provides the best linear pre-
dictor of y given d and X (see, e.g., Angrist and Pischke, 2009). However, if our goal is
to conduct causal inference, then this is not, in fact, a good reason to use this method.
Ordinary least squares is “best” in predicting actual outcomes, while causal inference is
about predicting missing outcomes, defined as ym = y(1) · (1− d) + y(0) · d. In other
words, the OLS weights are optimal for predicting “what is.” Instead, we are interested
in predicting “what would be” if treatment were assigned differently.

Intuition suggests that if our goal were in predicting “what is” and, without loss of
generality, group one were substantially larger than group zero, we would like to place a
large weight on the coefficients of group one (α1 and γ1), because these coefficients would
be used to predict actual outcomes of this group. Clearly, as noted by Deaton (1997) and
Solon et al. (2015), the OLS weights are consistent with this idea. However, if our goal is
to predict missing outcomes, we need to place a large weight on the coefficients of group
zero, because these coefficients are used to predict counterfactuals for group one. It is
also useful to note that the (infeasible) linear projection of the missing outcome, ym, on
d and X would solve our problem of “weight reversal.” The weights on τAPE|d=1 and
τAPE|d=0 would still be different than ρ and 1 − ρ if the conditional variances of p (X)

were different in the two groups; but, at least, the weight on τAPE|d=1 (τAPE|d=0) would be
increasing (decreasing) in ρ.10

There are several interesting corollaries of Theorem 1. Similar to the discussion above,
Corollary 1 clarifies the causal interpretability of the OLS estimand.

Corollary 1 (Causal Interpretation of OLS) Suppose that d is unconfounded conditional on
covariates, X. Also, suppose that the population models for d and both of y(1) and y(0) are linear

10To aid understanding of the OLS weights, it is also useful to consider partial residualization that is
implicit in least squares estimation. This idea is pursued further in Appendix C.
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Figure 1: Graphical Illustration of Theorem 1 (Corollary 1)

Notes: This figure provides a graphical illustration of Theorem 1 (and Corollary 1). The example presented
in this figure corresponds to the numerical example presented in Table 1. Linear projections of y on p (X)
are represented by solid lines, black for treated units and gray for control units. Parameters of interest are
represented by solid vertical red segments that measure the distance between both linear projections at
specific values of p (X), represented by dashed vertical lines.

in X and p (X), respectively. Then, Theorem 1 implies that

τ = w0 · τATC + w1 · τATT.

In other words, if d is unconfounded conditional on X and the population models for d
and both of y(1) and y(0) are linear in X and p (X), respectively, the weighting scheme
from Theorem 1 will apply to τATT and τATC.11 Indeed, the weight which is placed on
τATT is decreasing in ρ and the weight which is placed on τATC is increasing in ρ.

While the linearity assumptions for E (d | X), E [y(1) | p (X)], and E [y(0) | p (X)] are

11Usually, we would also require that there is complete overlap in the support of the distributions of X
among treated and control units, but instead we implicitly postulate a (globally) linear relationship between
potential outcomes and p (X). This allows us to extrapolate even in the absence of overlap.
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restrictive, they are not unusual in the recent literature. The linearity of E (d | X) is as-
sumed in Rhodes (2010), Aronow and Samii (2016), and Abadie, Athey, Imbens, and
Wooldridge (2017). It is also implicit in the analysis of saturated models by Angrist (1998)
and Humphreys (2009). The linearity assumption for E [y(1) | p (X)] and E [y(0) | p (X)]

is also not new. See Wooldridge (2010) for a textbook discussion. A similar assumption is
also used by Brinch, Mogstad, and Wiswall (2017) to identify marginal treatment effects
with a binary instrument. In general, the (non)linearity of potential outcomes with re-
spect to the propensity score figures prominently in the literature on marginal treatment
effects (see, e.g., Heckman and Vytlacil, 2005; Moffitt, 2008).

A graphical illustration of Theorem 1 (and Corollary 1) is provided in Figure 1, which
gives two linear projections of y on p (X), separately for each treatment status. This figure
corresponds to the numerical example in Table 1 above, and hence τ = −0.92, τATE =

0.2, τATT = 0.25, and τATC = −1. The average treatment effect is equal to the distance
between the two linear projections at the mean of p (X). Similarly, τATT and τATC are
equal to the same distance, evaluated at the group-specific means. Because the linearity
assumptions for E (d | X), E [y(1) | p (X)], and E [y(0) | p (X)] are in fact satisfied in this
example, each of these objects has a causal interpretation. Also, since there are relatively
few control units, τATE is much closer to τATT than to τATC. However, the opposite is true
for the OLS estimand, which is equal to the distance between the two linear projections
at w1 · E [p (X) | d = 1] + w0 · E [p (X) | d = 0] ' 6.4% · 0.961 + 93.6% · 0.9375 = 0.939.

Importantly, even if we were unwilling to maintain unconfoundedness or the lin-
earity assumptions for E (d | X), E [y(1) | p (X)], and E [y(0) | p (X)] in a different con-
text, our graphical illustration would remain unchanged; only the labeling of some of
our parameters of interest would be affected. According to Theorem 1, the OLS es-
timand will always remain equal to the distance between the two linear projections at
w1 · E [p (X) | d = 1] + w0 · E [p (X) | d = 0]. The only difference is that causal statements
would be inappropriate without the additional linearity assumptions in Corollary 1, and
the objects previously referred to as average treatment effects would need to be termed
differently, as in Theorem 1.

In fact, according to Corollary 2, it is possible to decompose the difference between τ,
the ordinary least squares estimand, and τATE, the average treatment effect, into compo-
nents attributable to (i) these linearity assumptions (“bias from linearity”) and (ii) implicit
weights on heterogeneous treatment effects (“bias from heterogeneity”).

13



Corollary 2 Theorem 1 implies that (i)

τ − τATE = w0 ·
(

τAPE|d=0 − τATC

)
+ w1 ·

(
τAPE|d=1 − τATT

)
︸ ︷︷ ︸

bias from linearity

+ δ · (τATC − τATT)︸ ︷︷ ︸
bias from heterogeneity

,

where

δ =
ρ2 ·V [p (X) | d = 1]− (1− ρ)2 ·V [p (X) | d = 0]
ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]

= ρ− w1 = w0 − (1− ρ) ,

and also that (ii)

τ − τAPE = δ ·
(

τAPE|d=0 − τAPE|d=1

)
.

Suppose that τAPE|d=1 6= τAPE|d=0. Then, Theorem 1 implies that (iii)

τ = τAPE if and only if
V [p (X) | d = 1]
V [p (X) | d = 0]

=

(
1− ρ

ρ

)2

.

Corollary 2 establishes several important implications of Theorem 1. The starting point
is a bias formula for OLS estimation of the model in (1) where we control for covariates
but do not interact these covariates with d. It is clear that there would be no bias in
estimating τATE if average treatment effects were equal for both groups of interest, τATT =

τATC, given that correct functional forms have been specified, namely τATT = τAPE|d=1

and τATC = τAPE|d=0; see result (i) above. At the same time, if treatment effects are
heterogeneous, then correct functional forms will not solve the problem, except in some
special cases. In fact, if we ignore the linearity assumptions and focus on estimating τAPE,
then we can greatly simplify our bias formula; see result (ii).

Indeed, the difference between τ, the ordinary least squares estimand, and τAPE, the
average partial effect, depends only on a particular measure of heterogeneity, i.e. the dif-
ference between τAPE|d=0 and τAPE|d=1, and the parameter δ. A few comments on δ are in
order. First, it is easy to verify that−1 < δ < 1. What follows, |δ| has an intuitive interpre-
tation as the percentage of sgn (δ) ·

(
τAPE|d=0 − τAPE|d=1

)
which is equal to the difference

between τ and τAPE. If δ is close to zero, then this difference will be small, unless the
amount of heterogeneity is extreme. On the other hand, if δ is far from zero, then neglect-
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ing heterogeneity will be problematic, unless treatment effects are, in fact, homogeneous.
Second, the sign of δ will be informative about the direction of the bias if we have any
information or prior beliefs about the sign of τAPE|d=0− τAPE|d=1. Third, δ is a function of
observable quantities and can be easily estimated. In fact, estimating δ requires no data
on outcomes, and hence it can serve as a diagnostic before any further analysis has been
carried out. Testing δ = 0 is also straightforward. Finally, the calculation of δ is further
simplified under the restriction that V [p (X) | d = 1] = V [p (X) | d = 0]. If we use δ∗ to
denote the value of this parameter in such a special case, it turns out that δ∗ = 2ρ − 1.
Apparently, in this setting, the knowledge of δ only requires information on ρ, the pro-
portion of units with d = 1. For example, if ρ = 5%, then δ∗ = −90%; if ρ = 60%, then
δ∗ = 20%. Of course, the special case where V [p (X) | d = 1] = V [p (X) | d = 0] is hardly
to be expected in practice. Still, δ∗ = 2ρ− 1 can potentially serve as a rule of thumb. For
example, if one group is much larger than another, and hence δ∗ is close to one in abso-
lute value, the bias from heterogeneity can easily become an issue. On the other hand,
if the proportions of units with d = 1 and d = 0 are roughly equal, we will expect τ to
approximately recover τAPE, as ρ = 50% implies that δ∗ = 0.12

This rule of thumb—that is, that OLS estimation of the model in (1) will be approxi-
mately consistent for τAPE whenever both groups of interest are of similar size—can also
be seen from a slightly different perspective. We can start with noting that the average
partial effect of d can be written as

τAPE = ρ · τAPE|d=1 + (1− ρ) · τAPE|d=0. (14)

Then, Corollary 3 provides an already familiar condition under which ordinary least
squares reverses these “natural” weights on τAPE|d=1 and τAPE|d=0.

Corollary 3 Suppose that V [p (X) | d = 1] = V [p (X) | d = 0]. Then, Theorem 1 implies that

τ = ρ · τAPE|d=0 + (1− ρ) · τAPE|d=1.

Precisely, if the variance of the “propensity score” is equal in both groups of interest,
then the OLS estimand is equal to a weighted average of both group-specific average
partial effects, with “reversed” weights attached to these effects. Namely, the proportion

12Corollary 2 also provides a general condition under which τ = τAPE; see result (iii). Namely, the
OLS estimand is equal to the average partial effect only in a special case, where the ratio of the conditional
variances of the “propensity score” is equal to the square of the reversed ratio of population proportions of
both groups of interest. In general, there can be little reason to expect this condition to hold.
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of units with d = 1 is used to weight the average partial effect of d on group zero and the
proportion of units with d = 0 is used to weight the average partial effect of d on group
one. Therefore, there is only one situation in which Corollary 3 allows the OLS estimand
to be equal to the average partial effect of d, and this occurs, as we have already seen,
whenever not only V [p (X) | d = 1] = V [p (X) | d = 0] but also ρ = 1− ρ = 50%.

Corollary 3 provides the foundation for a yet another rule of thumb: if the vast major-
ity of units belong to group j, then the OLS estimand will be approximately equal to the
effect on the other group. If ρ is close to zero (one), then τ is close to τAPE|d=1 (τAPE|d=0).
In other words, if we estimate the model in (1) using OLS and there are relatively very
few (many) treated units, then we might be willing to interpret our estimate as that of the
effect on the treated (controls). This approximation is never exactly correct, as ρ is strictly
between zero and one, but it might work well enough in practice. This relationship be-
tween ρ and τ can also be seen by decomposing the differences between τ and τATT as
well as between τ and τAPE|d=1, similar to Corollary 2.

Corollary 4 Theorem 1 implies that (i)

τ − τATT = w0 ·
(

τAPE|d=0 − τATC

)
+ w1 ·

(
τAPE|d=1 − τATT

)
︸ ︷︷ ︸

bias from linearity

+ w0 · (τATC − τATT)︸ ︷︷ ︸
bias from heterogeneity

,

and also that (ii)

τ − τAPE|d=1 = w0 ·
(

τAPE|d=0 − τAPE|d=1

)
.

Indeed, according to Corollary 4, the bias from heterogeneity—when we turn our atten-
tion to the effect on the treated—depends only on w0 as well as on the difference between
τAPE|d=0 and τAPE|d=1 (or τATC and τATT). This bias is also increasing in w0 while w0, in
turn, is increasing in ρ. What follows, if there are few treated units, w0 is small and bias
is small; if there are many treated units, the bias is relatively large. Also, w0 can be in-
terpreted, like |δ|, as the percentage of our measure of heterogeneity, τAPE|d=0− τAPE|d=1,
which contributes to bias. Like δ, w0 is also easily estimable and can be used as a simple
diagnostic. Unlike in the case of δ, it makes no sense, however, to test w0 = 0, as it is
always the case that 0 < w0 < 1. In other words, under Assumptions 1 and 2, and with
heterogeneous treatment effects, there is always nonzero bias from OLS estimation of the
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model in (1), with the effect on the treated as the parameter of interest. This does not
have to be the case for the average partial effect, although, as we have seen, nonzero bias
should also be expected (cf. footnote 12). Finally, if we use w∗0 to denote the value of w0

that is consistent with the restriction that V [p (X) | d = 1] = V [p (X) | d = 0], it turns out
that this rule of thumb is simply w∗0 = ρ. Again, if there are very few treated units, we
can expect to approximately recover the effect on the treated; if there are relatively many
treated units, we might not recover either of τAPE and τAPE|d=1.

Related Literature

It is useful to discuss the relationship between Theorem 1 and the previous results in An-
grist (1998) and Humphreys (2009). On the one hand, there is limited overlap between my
main result and these previous contributions, because they both restrict their attention to
saturated models with discrete covariates, in which the estimating equation includes a bi-
nary variable for each combination of covariate values (“stratum”). In this paper I provide
a more general result which is not restricted to saturated models or discrete covariates.
On the other hand, some connections between these contributions can nevertheless be
made. First, note that the baseline result in Angrist (1998) is derived for a model with
only two strata. Appendix D demonstrates that this result follows from a special case of
Theorem 1, in which X is a single binary variable. Hence, Theorem 1 is more general than
the baseline result in Angrist (1998), and it also provides a substantially different inter-
pretation of the ordinary least squares estimand. Aside from the result for a model with
two strata, Angrist (1998) also provides a more general representation of τn in

L (y | d, x1, . . . , xS) = τnd +
S

∑
s=1

βn,sxs, (15)

where x1, . . . , xS are stratum indicators. More precisely, Angrist (1998, fn. 11) demon-
strates that

τn =
S

∑
s=1

P (xs = 1) · P (d = 1 | xs = 1) · P (d = 0 | xs = 1)

∑S
t=1 P (xt = 1) · P (d = 1 | xt = 1) · P (d = 0 | xt = 1)

· τs, (16)

where τs = E (y | d = 1, xs = 1) − E (y | d = 0, xs = 1). This representation of the OLS
estimand is clearly different from Theorem 1 and Corollary 1, and each result offers cer-
tain advantages. On the one hand, unlike Corollary 1, Angrist (1998) does not have to
restrict the relationship between τs and P (d = 1 | xs = 1) to be linear. On the other hand,
unlike this paper, Angrist (1998) restricts his attention to saturated models with discrete
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covariates, which are clearly different from models that are typically estimated in prac-
tice. Finally, Theorem 1 and Corollary 1 make it arguably easier to identify whether in
a given empirical application the ordinary least squares estimand will be close to any of
the parameters of interest (cf. Corollaries 2 to 4). In particular, Angrist (1998) does not
recover a pattern of “weight reversal,” which is discussed in detail in this paper.

Second, note that Humphreys (2009) does not, in fact, derive a new representation of
τn, but instead provides a more detailed analysis of the result in Angrist (1998). In partic-
ular, Humphreys (2009) notes that τn, as represented in (16), can take any value between
min(τs) and max(τs). Then, he demonstrates that τn is also bounded by τATT and τATC if
we restrict the relationship between τs and P (d = 1 | xs = 1) to be monotonic. According
to Corollary 1, τ is a convex combination of τATT and τATC if, among other things, the
population models for y(1) and y(0) are linear in p (X), which also implies a linear rela-
tionship between τs and P (d = 1 | xs = 1) when the model for y is saturated. Of course,
this linearity assumption in Corollary 1 is stronger than the monotonicity assumption in
Humphreys (2009). However, in return, we are able to derive a closed-form expression
for τ in terms of τATT and τATC. Also, like Angrist (1998), Humphreys (2009) restricts his
attention to saturated models with discrete covariates, which is a major limitation.

Estimating Heterogeneous Effects

There are several constructive solutions to the problem described in this paper. First, it
is sufficient to interact the variable of interest with other covariates, and then calculate
its average partial effect on a given group (similar to equations (10) and (11)). This leads
to an estimator which is sometimes referred to as “Oaxaca–Blinder” (Kline, 2011, 2014),
“regression adjustment” (Wooldridge, 2010), “flexible OLS” (Khwaja, Picone, Salm, and
Trogdon, 2011), or even “regression” (Imbens and Wooldridge, 2009). Second, if one is
not comfortable with the linear approximation to the conditional mean, it is possible to
use any of the standard semi- and nonparametric estimators for average treatment effects,
such as inverse probability weighting, matching, and other methods based on the propen-
sity score (for a review, see Imbens and Wooldridge, 2009). Third, it might also help to
estimate a model with homogeneous effects using weighted least squares. In particular,
we might use weights to estimate a model with d and p (X) as the only independent
variables. In this case we would like to characterize a set of weights, w, such that τw in

L
(√

w · y |
√

w,
√

w · d,
√

w · p (X)
)
= αw ·

√
w + τw ·

√
w · d + γw ·

√
w · p (X) (17)

has a useful interpretation. An appropriate set of weights is provided in Theorem 2.
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Theorem 2 (Weighted Least Squares Correction) Suppose that Assumptions 1 and 2 are sat-
isfied. Also, w = 1−ρ

w0
· d + ρ

w1
· (1− d). Then,

τw = τAPE.

The proof of Theorem 2 follows directly from the proof of Theorem 1. Indeed, the average
partial effect of d can be recovered from a weighted least squares procedure, with weights
of 1−ρ

w0
for units with d = 1 and weights of ρ

w1
for units with d = 0. These weights consist

of two parts: either 1
w1

or 1
w0

; and either ρ or 1− ρ. The role of the first part is always to
undo the OLS weights (w1 and w0 in Theorem 1); the role of the second part is to impose
the correct weights of ρ on τAPE|d=1 and 1− ρ on τAPE|d=0. Finally, it is useful to note
that there is no similar procedure to recover τAPE|d=1 or τAPE|d=0; both of these objects,
however, are easily obtained from equation (11).

Interestingly, the structure of the weighted least squares procedure in Theorem 2 re-
sembles the “tyranny of the minority” estimator in Lin (2013). This method uses weights
of 1−ρ

ρ for units with d = 1 and weights of ρ
1−ρ for units with d = 0; it also controls for X

instead of p (X). It is important to note, however, that this method is designed to solve
a different problem than Theorem 2. In particular, Freedman (2008b,a) demonstrates that
regression adjustments to experimental data can lead to a loss in precision. On the other
hand, Lin (2013) shows that this is no longer possible if we additionally interact d with X.
Then, he derives the “tyranny of the minority” estimator as an alternative least squares
procedure, based on a single conditional mean, which does not suffer from this loss in
precision. In the context of observational data, however, this estimator is consistent for
the average partial effect of d only in a special case, namely under the restriction in Corol-
lary 3, V [p (X) | d = 1] = V [p (X) | d = 0].

Two-Stage Least Squares

Finally, I demonstrate that a result similar to Theorem 1 carries over to two-stage least
squares. As before, let Z denote the row vector of instrumental variables for d, (z1, . . . , zL).
It is helpful to start with introducing an additional linear projection, namely

d (X, Z) = L (d | 1, X, Z) = α f + Xβ f + Zζ f , (18)
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where d (X, Z) are the fitted values from a linear first stage. It is then well known that the
two-stage least squares estimand is equal to τts in

L [y | 1, d (X, Z) , X] = αts + τts · d (X, Z) + Xβts. (19)

However, it is not possible to apply Theorem 1 to τts because d (X, Z) is not binary. In-
stead, it is sufficient to note that τts = τc f if

L (y | 1, d, X, r) = αc f + τc f · d + Xβc f + ηc f r, (20)

where
r = d− d (X, Z) (21)

are the errors from a linear first stage. They serve as a control function, i.e. a variable
which renders d appropriately exogenous (see, e.g., Wooldridge, 2015).13

Because d is binary and τts = τc f , we can provide a new interpretation of the 2SLS
estimand by applying Theorem 1 to τc f . To accomplish this, we need to redefine several
objects from before. In particular, let the “propensity score” be denoted by

p (X, r) = L (d | 1, X, r) = αs,ts + Xβs,ts + ηs,tsr. (22)

Similarly, we need two auxiliary linear projections of y on p (X, r), separately for d = 1
and d = 0, namely

L [y | 1, p (X, r)] = α1,ts + γ1,ts · p (X, r) if d = 1, (23)

and also
L [y | 1, p (X, r)] = α0,ts + γ0,ts · p (X, r) if d = 0. (24)

As before, equations (22) to (24) are definitional; even though equations (23) and (24) are
similar to potential outcome models in Brinch et al. (2017), they do not have to represent
well-specified conditional expectations. We do require, however, that the linear projec-
tions listed above exist and are unique. This is guaranteed by Assumptions 3 and 4.

Assumption 3 (i) E(y2), E(‖X‖2), and E(‖Z‖2) are finite. (ii) The covariance matrices of
(X, Z), (d, X, r), and (X, r) are nonsingular.

13This control function representation of two-stage least squares is often attributed to Hausman (1978),
although it seems to go back to earlier literature. For example, Blundell and Matzkin (2014) note that a
similar result is discussed in Telser (1964). See also Heckman (1978) and Kline and Walters (2018).
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Assumption 4 V [p (X, r) | d = 1] and V [p (X, r) | d = 0] are nonzero.

Because the linear projections in (23) and (24) are well defined by assumption, they can
be used to define the average partial effect of d as

τAPE,ts = (α1,ts − α0,ts) + (γ1,ts − γ0,ts) · E [p (X, r)] (25)

as well as the average partial effect of d on group j (j = 0, 1) as

τAPE,ts|d=j = (α1,ts − α0,ts) + (γ1,ts − γ0,ts) · E [p (X, r) | d = j] . (26)

These objects are used in Theorem 3 to provide a general weighted average representation
of the two-stage least squares estimand.

Theorem 3 (Weighted Average Interpretation of 2SLS) Suppose that Assumptions 3 and 4
are satisfied. Then,

τts =
ρ ·V [p (X, r) | d = 1]

ρ ·V [p (X, r) | d = 1] + (1− ρ) ·V [p (X, r) | d = 0]
· τAPE,ts|d=0

+
(1− ρ) ·V [p (X, r) | d = 0]

ρ ·V [p (X, r) | d = 1] + (1− ρ) ·V [p (X, r) | d = 0]
· τAPE,ts|d=1.

Henceforth, to simplify notation, I will use w0,ts to denote ρ·V[p(X,r)|d=1]
ρ·V[p(X,r)|d=1]+(1−ρ)·V[p(X,r)|d=0] and

w1,ts to denote (1−ρ)·V[p(X,r)|d=0]
ρ·V[p(X,r)|d=1]+(1−ρ)·V[p(X,r)|d=0] .

The proof of Theorem 3 is analogous to that of Theorem 1, after noticing that τts = τc f .
Theorem 3 makes it clear that the 2SLS estimand is identical to the outcome of a procedure
that is, not surprisingly, very similar to OLS. In the first step, we project d on all exoge-
nous variables (“first stage”). In the second step, we obtain p (X, r), i.e. the “propensity
score” from a linear projection of d on X and the first-stage errors. In the third step, we
obtain τAPE,ts|d=1 and τAPE,ts|d=0 from two linear projections of y on p (X, r), separately
for d = 1 and d = 0. In the fourth step, we calculate a weighted average of τAPE,ts|d=1 and
τAPE,ts|d=0. The weight which is placed by two-stage least squares on τAPE,ts|d=1 is de-

creasing in V[p(X,r)|d=1]
V[p(X,r)|d=0] and ρ and the weight which is placed on τAPE,ts|d=0 is increasing

in V[p(X,r)|d=1]
V[p(X,r)|d=0] and ρ. Clearly, Theorem 3 also has several implications that are analogous

21



to Corollaries 1 to 4 and Theorem 2. For conciseness they are not restated here.14

It is also useful to explain the differences between this implicit estimation procedure
and the Heckman’s two-step estimation procedure for the Gaussian switching regime
model (Heckman, 1976, 1979). As noted by Heckman, Tobias, and Vytlacil (2001, 2003)
and Wooldridge (2015), this latter procedure can be used for estimation of τATE, τATT, and
τATC using instrumental variables. The first difference between 2SLS and the Heckman’s
procedure is in the computation of the first-stage residuals. The Heckman’s procedure
uses a probit first stage and generalized residuals, while 2SLS is implicitly based on a
linear first stage and OLS residuals.15 Second, in the next step, the Heckman’s procedure
amounts to regressing y on the vector of other covariates and the generalized residuals,
separately for each treatment status, while 2SLS is implicitly based on similar regressions
of y on the “propensity score,” which in turn depends on other covariates and the first-
stage residuals. Third, and most importantly, the Heckman’s procedure allows us to cal-
culate appropriate averages of the difference in fitted values from the previous step—and
this allows us to estimate each of τATE, τATT, and τATC—while two-stage least squares is
equal to a specific weighted average of the estimated effects on the treated and controls,
where the weights are inversely related to the proportion of each group.

Two further remarks are in order. First, Heckman and Vytlacil (2005) conclude that the
IV estimand is equal to the average treatment effect when potential outcomes are linear
in the propensity score. Since the analysis in Heckman and Vytlacil (2005) is made con-
ditional on X, Theorem 3 makes it clear that this conclusion does not generally extend to
unconditional estimands. Second, in a setting without additional covariates, Kline and
Walters (2018) demonstrate that the IV estimator is algebraically equivalent to a number
of control function estimators of the local average treatment effect, including an estima-
tor based on the Heckman’s two-step procedure. This equivalence disappears, however,
when covariates are introduced into the model. An implication of Theorem 3 is that even
in a setting with covariates, the 2SLS estimand has an implicit structure that is similar to
control function procedures; it is also different, however, from any of the standard pa-
rameters of interest. A more detailed comparison between the IV estimand and the local
average treatment effect is relegated toward the end of the paper.

14For later reference, let the 2SLS analogue of δ be denoted by δts =
ρ2·V[p(X,r)|d=1]−(1−ρ)2·V[p(X,r)|d=0]
ρ·V[p(X,r)|d=1]+(1−ρ)·V[p(X,r)|d=0] =

ρ−w1,ts = w0,ts− (1− ρ). Interestingly, w∗0,ts = ρ and δ∗ts = 2ρ− 1. In other words, the “rule of thumb” val-
ues of these diagnostics, now obtained under the restriction that V [p (X, r) | d = 1] = V [p (X, r) | d = 0],
are identical for OLS and 2SLS.

15As noted by Olsen (1980), replacing a probit selection equation (first stage) with a linear selection
equation (first stage) is equivalent to assuming that the error term in the selection (treatment) equation is
uniformly distributed. Otherwise this procedure is analogous to Heckman (1976, 1979).
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3 Empirical Applications

This section provides several empirical illustrations of Theorems 1 and 3 as well as their
various corollaries.16 I begin with outlining four scenarios that applied researchers are
likely to face, and then provide an empirical application for each of them. I assume that
the researcher wishes to estimate the model in (1) using OLS or 2SLS but is concerned
about treatment effect heterogeneity; she might be interested in ATE, ATT, or both.

It is important to note that throughout this section τAPE, τAPE|d=1, and τAPE|d=0 are
implicitly treated as our parameters of interest. Although this might be restrictive, I also
demonstrate that in all my empirical applications sample analogues of these parameters,
reported in the body of the paper, are very similar to other estimates of ATE, ATT, and
ATC, reported in Appendix F. In other words, this section focuses on the “bias from
heterogeneity” and largely ignores the “bias from linearity,” but my results also suggest
that the latter source of bias is not particularly important in these applications. Of course,
in other empirical contexts, the bias from linearity might also be substantial.

The first of four scenarios is that the researcher is only interested in one of these pa-
rameters and the diagnostic methods in Corollaries 2 and 4 indicate that this parameter
should approximately be recovered by OLS or 2SLS, even if treatment effects are hetero-
geneous. The analysis of the effects of the National Supported Work (NSW) program in
Angrist and Pischke (2009) is consistent with this scenario. In this application, the propor-
tion of treated units is so small that OLS estimates are very similar to those of the effect
on the treated, even though the amount of heterogeneity is quite substantial.

The second scenario is that the diagnostic methods indicate that OLS or 2SLS estimates
might be quite different from those of our parameter or parameters of interest, but, in
fact, they are similar, as treatment effects are also relatively homogeneous. To provide an
empirical illustration of this scenario, I replicate the analysis of anti-Semitic violence in
Voigtländer and Voth (2012). The effects of medieval pogroms on twentieth-century anti-
Semitism are sufficiently homogeneous to outweigh the fact that my diagnostics would
otherwise suggest caution.

In the third scenario, the researcher is potentially interested in both ATE and ATT, and
the diagnostics indicate that one of these parameters—but of course not both—should
be recovered by OLS or 2SLS even in the presence of treatment effect heterogeneity. The
analysis of the effects of Catholic schooling on twelfth grade math test scores in Altonji,
Elder, and Taber (2005) and Wooldridge (2015) is consistent with this scenario. In this
study, the proportion of treated units is again small, and hence OLS and 2SLS can be used

16The implementation of these theoretical results in Stata is discussed in Appendix E.

23



to approximate ATT but not ATE. In this scenario, if the researcher only reports OLS or
2SLS estimates, she might give a reasonable answer to one of her questions but the other
question will remain unanswered.

Finally, in the fourth scenario, my diagnostics indicate that—in the presence of treat-
ment effect heterogeneity—OLS or 2SLS estimates might be quite different from those
of our target parameter or parameters. Because treatment effects are indeed heteroge-
neous, our conclusions from the study are affected by the implicit OLS/2SLS weights; in
other words, “bias from heterogeneity” is present. To provide an empirical illustration
of this scenario, I replicate the analysis of the effects of cash transfers to poor families
on longevity in Aizer et al. (2016). In this application, there are relatively many treated
units and hence OLS places a disproportionately large weight on the effect on the con-
trols. Also, this effect seems to be much larger than the effect on the treated, so OLS
overestimates both ATE and ATT.

Scenario 1: OLS/2SLS Recovers the Parameter of Interest Despite the

Presence of Heterogeneity

In their influential book, Angrist and Pischke (2009) reanalyze the NSW–CPS data, previ-
ously studied by LaLonde (1986), Dehejia and Wahba (1999), Smith and Todd (2005), and
many others.17 Angrist and Pischke (2009) conclude that OLS estimation of the model in
(1) is a sensible strategy even in the presence of treatment effect heterogeneity, as their
estimates of the effects of NSW program on earnings are reasonably similar to the known
experimental estimate of 1,794. My analysis suggests that this conclusion is driven by the
small proportion of treated units in the NSW–CPS sample.

In this context, it is clear that the researcher is only interested in the effect on the
treated. The reason is simple: respondents from the CPS, who constitute the nonexper-
imental comparison group, are very different from individuals eligible for the program.
What follows, it would not be reasonable to expect that any estimates of the effect on the
controls could replicate the experimental benchmark, as this benchmark corresponds to
the effect of NSW program on a different group of individuals.

If the researcher is primarily interested in the effect on the treated, then Corollary 4
suggests using ŵ0, the estimated OLS weight on the effect on the controls, as a simple
diagnostic. Then, if ŵ0 is close to zero, OLS estimates will be similar to the implicit es-
timates of the effect on the treated. Table 2 reproduces the OLS estimates from Angrist

17More precisely, Angrist and Pischke (2009) analyze the subsample of the experimental treated units
constructed by Dehejia and Wahba (1999), combined with “CPS-1” or “CPS-3,” i.e. two of the nonexperi-
mental comparison groups constructed by LaLonde (1986). In this replication, I focus on “CPS-1.”
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Table 2: OLS Estimates of the Effects of NSW Program

(1) (2) (3) (4)
Estimates

NSW program –3,437*** –78 623 794
(612) (596) (610) (619)

Diagnostics
ŵ0 0.019 0.001 0.017 0.017
ŵ∗0 = ρ̂ 0.011 0.011 0.011 0.011
δ̂ –0.970 –0.987 –0.971 –0.971
δ̂∗ = 2ρ̂− 1 –0.977 –0.977 –0.977 –0.977

Demographic controls X X X
“Earnings in 1974” X
Earnings in 1975 X X X

Observations 16,177 16,177 16,177 16,177
Notes: These estimates correspond to column 2 in Table 3.3.3 in Angrist and Pischke (2009, p. 89). See also

LaLonde (1986), Dehejia and Wahba (1999), and Smith and Todd (2005) for more details on these data.
The dependent variable is earnings in 1978. Demographic controls include age, age squared, years of
schooling, and indicators for married, high school dropout, black, and Hispanic. For treated individuals,
“Earnings in 1974” correspond to real earnings in months 13–24 prior to randomization, which overlaps
with calendar year 1974 for a number of individuals. See Smith and Todd (2005) for further discussion.
Formulas for w0 and δ are given in Theorem 1 and Corollary 2, respectively. Huber–White standard errors
are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

and Pischke (2009) and reports the values of my diagnostics, with different columns cor-
responding to different sets of control variables. It turns out that ŵ0 is between 0.1% and
1.9% for all specifications; similarly, the “rule of thumb” value of this diagnostic, ŵ∗0 , is, as
always, equal to the proportion of treated units (only 1.1% in this sample). These results
are very simple to interpret. Namely, we estimate that the difference between the OLS
estimand and the effect on the treated is smaller than 2% of the difference between the
effect on the controls and the effect on the treated. In this case, it might indeed be sensible
to report only the OLS estimates of the effect of NSW program.

Table 3 provides an application of Theorem 1 to the OLS estimates in Table 2. As a
result, all the baseline coefficients from Angrist and Pischke (2009) are now decomposed
into two components, ATT and ATC. The difference between these estimates is always
quite large. In column 4, while the estimate of the effect on the treated is 928, the effect on
the controls is estimated to be –6,840. In other words, the OLS estimate of 794, reported
in Angrist and Pischke (2009), is actually a weighted average of these two estimates. The
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Table 3: NSW Program and Treatment Effect Heterogeneity

(1) (2) (3) (4)
NSW program –3,437*** –78 623 794

(612) (596) (610) (619)

Decomposition (Theorem 1)
a. ATT –3,373*** –69 754 928

(636) (598) (672) (673)
b. ŵ1 0.981 0.999 0.983 0.983

c. ATC –6,753*** –6,289** –6,841*** –6,840***
(1,201) (2,561) (1,271) (1,298)

d. ŵ0 0.019 0.001 0.017 0.017

OLS = a · b + c · d –3,437*** –78 623 794
(612) (596) (610) (619)

e. P̂ (d = 1) 0.011 0.011 0.011 0.011
f . P̂ (d = 0) 0.989 0.989 0.989 0.989

ATE = a · e + c · f –6,714*** –6,218** –6,754*** –6,751***
(1,189) (2,534) (1,258) (1,285)

Demographic controls X X X
“Earnings in 1974” X
Earnings in 1975 X X X

Observations 16,177 16,177 16,177 16,177
Notes: See also LaLonde (1986), Dehejia and Wahba (1999), and Smith and Todd (2005) for more details on
these data. The dependent variable is earnings in 1978. Demographic controls include age, age squared, years
of schooling, and indicators for married, high school dropout, black, and Hispanic. For treated individuals,
“Earnings in 1974” correspond to real earnings in months 13–24 prior to randomization, which overlaps with
calendar year 1974 for a number of individuals. See Smith and Todd (2005) for further discussion. Estimates of
ATE, ATT, and ATC are sample analogues of τAPE, τAPE|d=1, and τAPE|d=0, respectively. Formulas for w0 and
w1 are given in Theorem 1. Huber–White standard errors are in parentheses. Standard errors for ATE, ATT, and
ATC ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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fact that this estimate is close to 928, and not to –6,840, is a consequence of the small
proportion of treated units in this sample, 1.1%. The weight on 928 is 98.3% and the
weight on –6,840 is only 1.7%, as already reported in Table 2. If the proportion of treated
units was larger, the weight on ATT would be smaller and the “performance” of OLS in
replicating the experimental benchmark would deteriorate.

As a robustness check, I report a number of alternative estimates of the effects of NSW
program in Appendix F. I consider nearest-neighbor matching on the LPM and logit
propensity scores as well as the “Oaxaca–Blinder” estimator of average treatment effects.
In each case, I separately estimate ATE, ATT, and ATC. These additional estimates are
consistent with the claim that the general pattern of results in Table 3 is driven by the OLS
weights. The estimates of ATE and ATC are always negative and large in magnitude; the
estimates of ATT are much closer to the experimental benchmark.

Scenario 2: OLS/2SLS Recovers the Parameter(s) of Interest Due to Lack

of Heterogeneity

A recent paper by Voigtländer and Voth (2012) examines the long-term persistence of cul-
tural traits, focusing on anti-Semitic sentiment and violence in Germany. In particular, the
authors analyze the data on over 300 towns where Jewish communities are documented
for both the medieval and interwar periods; they demonstrate that medieval pogroms,
which occurred during the Black Death (1348–50), are associated with higher levels of
anti-Semitism in the 1920s and 1930s, as measured by pogroms, NSDAP votes in 1928,
DVFP votes in 1924, attacks on synagogues during the Reichskristallnacht in 1938, and
other expressions of anti-Semitic hatred.

In this study, the “treatment” variable equals one for towns where a pogrom occurred
in the years 1348–50 and zero otherwise. It seems plausible that the researcher might be
interested either in the average effect of medieval pogroms, ATE, or in the average effect
of “treatment” on towns where a pogrom occurred, ATT. One might also argue that this
latter parameter is more informative.

Table 4 reproduces the baseline estimates from Voigtländer and Voth (2012) and re-
ports the values of my diagnostics. These results suggest caution in interpreting the OLS
estimates. The proportion of towns where a Black Death pogrom occurred is very high
and equal to 72.3–75.9%. What follows, we expect OLS to place a disproportionately
large weight—of the same order of magnitude—on the effect on the controls. In fact, we
estimate that the difference between the OLS estimand and the effect on the treated is be-
tween 71.5% and 76.2% of the difference between the effect on the controls and the effect
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Table 4: OLS Estimates of the Effects of Medieval Pogroms

1920s
pogroms NSDAP 1928 DVFP 1924 Synagogue

attacks
Estimates

Medieval pogrom 0.0607*** 0.0142** 0.0147 0.1239**
(0.0226) (0.0057) (0.0110) (0.0522)

Diagnostics
ŵ0 0.734 0.715 0.733 0.762
ŵ∗0 = ρ̂ 0.725 0.723 0.723 0.759
δ̂ 0.459 0.438 0.456 0.521
δ̂∗ = 2ρ̂− 1 0.450 0.446 0.446 0.518

Log of population in 1924 X
Log of population in 1925 X
Log of population in 1928 X
Log of population in 1933 X
% Jewish in 1925 X X X
% Jewish in 1933 X
% Protestant in 1925 X X X X

Observations 320 325 325 278
Notes: These estimates correspond to columns 1, 2, 3, and 6 in Table VI in Voigtländer and Voth (2012, p. 1365).

The dependent variables are an indicator for pogroms during the 1920s, the vote share of the NSDAP in the
May 1928 election, the vote share of the Deutsch-Völkische Freiheitspartei in the May 1924 election, and an
indicator for whether a synagogue was destroyed or damaged in the 1938 Reichskristallnacht. Formulas for w0
and δ are given in Theorem 1 and Corollary 2, respectively. Cluster-robust standard errors are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

on the treated. The difference between OLS and ATE is estimated to be between 43.8%
and 52.1% of this measure of heterogeneity. In consequence, if the effects of medieval
pogroms on modern anti-Semitism were really heterogeneous, the OLS estimates would
be very biased.18

Further details on the heterogeneity in these effects are presented in Table 5, which
applies Theorem 1 to the baseline estimates in Table 4. What follows, each OLS estimate

18This suggestion is mostly illustrative, as Voigtländer and Voth (2012) also report matching estimates
of the effects of medieval pogroms, which are similar to the OLS estimates. Moreover, the authors consider
two other measures of modern anti-Semitism, the number of deportations of Jews after 1933 and the number
of anti-Semitic letters to Der Stürmer per 10,000 inhabitants. I ignore these measures for two reasons. First,
in these two cases, Voigtländer and Voth (2012) use the Poisson regression model instead of OLS estimation
of the model in (1). Second, the effects of medieval pogroms are more heterogeneous in the case of these
two measures, and hence they are inconsistent with my description of “scenario 2” that applied researchers
are likely to face. Nevertheless, my results for these measures are also mostly consistent with Voigtländer
and Voth (2012).
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Table 5: Medieval Pogroms and Treatment Effect Heterogeneity

1920s
pogroms NSDAP 1928 DVFP 1924 Synagogue

attacks
Medieval pogrom 0.0607*** 0.0142** 0.0147 0.1239**

(0.0226) (0.0057) (0.0110) (0.0522)

Decomposition (Theorem 1)
a. ATT 0.0563* 0.0115** 0.0122 0.1150**

(0.0292) (0.0052) (0.0110) (0.0470)
b. ŵ1 0.266 0.285 0.267 0.238

c. ATC 0.0623*** 0.0153*** 0.0156 0.1267**
(0.0207) (0.0057) (0.0112) (0.0548)

d. ŵ0 0.734 0.715 0.733 0.762

OLS = a · b + c · d 0.0607*** 0.0142** 0.0147 0.1239**
(0.0226) (0.0057) (0.0110) (0.0522)

e. P̂ (d = 1) 0.725 0.723 0.723 0.759
f . P̂ (d = 0) 0.275 0.277 0.277 0.241

ATE = a · e + c · f 0.0579** 0.0125** 0.0132 0.1178**
(0.0264) (0.0053) (0.0109) (0.0484)

Log of population in 1924 X
Log of population in 1925 X
Log of population in 1928 X
Log of population in 1933 X
% Jewish in 1925 X X X
% Jewish in 1933 X
% Protestant in 1925 X X X X

Observations 320 325 325 278
Notes: See also Voigtländer and Voth (2012) for more details on these data. The dependent variables are an
indicator for pogroms during the 1920s, the vote share of the NSDAP in the May 1928 election, the vote share of
the Deutsch-Völkische Freiheitspartei in the May 1924 election, and an indicator for whether a synagogue was
destroyed or damaged in the 1938 Reichskristallnacht. Estimates of ATE, ATT, and ATC are sample analogues
of τAPE, τAPE|d=1, and τAPE|d=0, respectively. Formulas for w0 and w1 are given in Theorem 1. Cluster-robust
standard errors are in parentheses. Standard errors for ATE, ATT, and ATC ignore that the propensity score is
estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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from Voigtländer and Voth (2012) is now represented as a weighted average of two other
estimates, for towns where a medieval pogrom occurred (ATT) and for towns where a
medieval pogrom did not occur (ATC). There is no evidence of meaningful treatment
effect heterogeneity. On the one hand, the estimates of the effect on the controls are con-
sistently larger than those of the effect on the treated. Consequently, since δ̂ > 0 (which,
in turn, is due to the fact that ρ̂ > 50%), OLS also seems to overestimate the average effect
of medieval pogroms (ATE). On the other hand, these differences are very small and little
is lost by reporting only the OLS estimates.

Additionally, I provide a number of alternative estimates of the effects of medieval
pogroms in Appendix F. These results confirm that the effects on the treated and controls
are similar. What follows, my replication of Voigtländer and Voth (2012) illustrates a
simple fact: when treatment effects are homogeneous, the OLS weights do not matter in
practice; even if their distribution between ATT and ATC is potentially quite harmful, a
“weird” convex combination of two similar objects remains similar to both of them.

Scenario 3: OLS/2SLS Recovers One of Two Parameters of Interest

In the next empirical illustration I replicate some of the estimates of the effects of Catholic
schooling on math test scores from Wooldridge (2015) who, in turn, revisits an earlier
study by Altonji et al. (2005). In this case, we use distance from the student’s home to
the nearest Catholic high school as an instrument for Catholic schooling. Hence, in this
application, I represent the OLS and 2SLS estimates from Wooldridge (2015) as weighted
averages of estimates of ATT and ATC. It is important to note that Wooldridge (2015) also
uses a number of control function approaches to estimate various parameters of interest,
including ATT and ATC, so this replication is mostly illustrative.

In the context of the effectiveness of various institutions or policies, it is often inter-
esting to make inferences about both ATE and ATT. In a study of the effects of Catholic
schooling, the difference between these parameters is informative about whether students
select to Catholic schools on the basis of gains from such schooling. In general, we might
expect that ATT is larger than ATE (or ATC). If the effect on the treated is indeed larger
than the effect on the controls, then an implication of Corollary 4 is that OLS (and 2SLS)
will be negatively biased for ATT. The direction of bias in estimating ATE is data depen-
dent but can be inferred from the sign of δ (Corollary 2) or δts (footnote 14).

Table 6 reproduces an OLS and a 2SLS estimate from Wooldridge (2015) in columns 1
and 3; it also reports estimates which additionally use a number of demographic control
variables. Finally, Table 6 reports the values of my diagnostics. Since δ̂ and δ̂ts are always
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Table 6: OLS and 2SLS Estimates of the Effects of Catholic Schooling

(1) (2) (3) (4)
OLS 2SLS

Estimates
Catholic high school 1.49*** 1.61*** 2.36* 3.36***

(0.39) (0.38) (1.25) (1.22)

Diagnostics
ŵ0 / ŵ0,ts 0.055 0.058 0.090 0.086
ŵ∗0 / ŵ∗0,ts (= ρ̂) 0.061 0.061 0.061 0.061
δ̂ / δ̂ts –0.884 –0.882 –0.849 –0.854
δ̂∗ / δ̂∗ts (= 2ρ̂− 1) –0.879 –0.878 –0.879 –0.878

Baseline controls X X X X
Demographic controls X X

Observations 7,444 7,306 7,444 7,306
Notes: The estimates in columns 1 and 3 correspond to columns 1 and 2 in Table 2 in Wooldridge (2015,
p. 426). See also Altonji et al. (2005) for more details on these data. The dependent variable is a standardized
twelfth grade math test score. Baseline controls include mother’s education, father’s education, and log
of family income. Demographic controls include indicators for female, Asian, black, Hispanic, a married
parent, and a single-mother household. In columns 3 and 4, instrumental variables for Catholic schooling
include the following indicators for distance from the nearest Catholic high school: less than 1 mile, between
1 and 3 miles, between 3 and 6 miles, and between 6 and 10 miles. Formulas for w0, w0,ts, δ, and δts are given
in Theorem 1, Theorem 3, Corollary 2, and footnote 14, respectively. Huber–White standard errors are in
parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

negative, we expect OLS and 2SLS to be positively biased for ATE, as long as ATT is also
larger than ATC. In fact, this bias can be quite substantial, as it is estimated to correspond
to 84.9–88.4% of the difference between ATT and ATC. On the other hand, the bias in esti-
mating ATT will be small; it is expected to be equal to 5.5–9.0% of this difference. Neither
of these claims should be surprising, however, since the proportion of treated units, 6.1%,
is also very small. What follows, if the effects of Catholic schooling are heterogeneous
and the researcher reports only the OLS and 2SLS estimates, she will likely gain (approx-
imate) knowledge of the average treatment effect on the treated but not of the average
treatment effect. This latter parameter is implicitly “swept under the rug.”

The results in Table 7, which applies Theorems 1 and 3 to the estimates in Table 6, are
consistent with this picture. The use of instrumental variables in columns 3 and 4 reveals
a substantial amount of heterogeneity. Both estimates of the effect on the treated are posi-
tive and statistically significant; the estimates of the effect on the controls are negative but
not statistically different from zero. In consequence, the 2SLS estimates are also positive
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Table 7: Catholic Schooling and Treatment Effect Heterogeneity

(1) (2) (3) (4)
OLS 2SLS

Catholic high school 1.49*** 1.61*** 2.36* 3.36***
(0.39) (0.38) (1.25) (1.22)

Decomposition (Theorems 1 and 3)
a. ATT 1.47*** 1.58*** 2.89** 3.93***

(0.40) (0.41) (1.44) (1.45)
b. ŵ1 / ŵ1,ts 0.945 0.942 0.910 0.914

c. ATC 1.92*** 2.13*** –2.91 –2.77
(0.45) (0.46) (3.88) (4.04)

d. ŵ0 / ŵ0,ts 0.055 0.058 0.090 0.086

OLS / 2SLS = a · b + c · d 1.49*** 1.61*** 2.36* 3.36***
(0.39) (0.38) (1.25) (1.22)

e. P̂ (d = 1) 0.061 0.061 0.061 0.061
f . P̂ (d = 0) 0.939 0.939 0.939 0.939

ATE = a · e + c · f 1.89*** 2.09*** –2.56 –2.37
(0.44) (0.45) (3.65) (3.80)

Baseline controls X X X X
Demographic controls X X

Observations 7,444 7,306 7,444 7,306
Notes: See also Altonji et al. (2005) for more details on these data. The dependent variable is a standardized twelfth grade

math test score. Baseline controls include mother’s education, father’s education, and log of family income. Demographic
controls include indicators for female, Asian, black, Hispanic, a married parent, and a single-mother household. In columns
3 and 4, instrumental variables for Catholic schooling include the following indicators for distance from the nearest Catholic
high school: less than 1 mile, between 1 and 3 miles, between 3 and 6 miles, and between 6 and 10 miles. Estimates of ATE,
ATT, and ATC are sample analogues of τAPE or τAPE,ts, τAPE|d=1 or τAPE,ts|d=1, and τAPE|d=0 or τAPE,ts|d=0, respectively. For-
mulas for w0 and w1 (w0,ts and w1,ts) are given in Theorem 1 (Theorem 3). Huber–White standard errors are in parentheses.
Standard errors for ATE, ATT, and ATC ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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and quite large. While they provide a reasonable approximation to the implicit estimates
of ATT, they also ignore the fact that the estimates of ATE are very different. There is no
evidence that a randomly drawn individual would benefit from Catholic schooling.

As a robustness check, I report a number of alternative estimates of the effects of
Catholic schooling on math test scores in Appendix F. In the case of instrumental vari-
ables estimation, as in Wooldridge (2015), I estimate the Gaussian switching regime model
using the Heckman’s two-step procedure. It turns out that these estimates are similar to
the implicit 2SLS estimates of ATE, ATT, and ATC in Table 7, although the estimates of
ATC (and hence ATE) in Appendix F are also closer to zero.

Scenario 4: OLS/2SLS Does Not Recover the Parameter(s) of Interest

In my final empirical application, I follow a recent paper by Aizer et al. (2016) and study
the effects of cash transfers to poor families on longevity of the children of their benefi-
ciaries. In particular, Aizer et al. (2016) analyze the administrative records of applicants
to the Mothers’ Pension (MP) program, which was the first welfare program sponsored
by the U.S. government. It supported poor mothers with dependent children and was
launched on a state-by-state basis between 1911 and 1931.

In this study, the control group consists only of children of mothers who applied to
the program, were initially deemed eligible, but were ultimately rejected. This strategy
is used to ensure that treated and control individuals are broadly comparable; neverthe-
less, at the time of application, rejected mothers were somewhat better-off than accepted
mothers. As before, it seems plausible that the researcher might be interested either in the
average effect of cash transfers, ATE, or in the average effect of cash transfers on accepted
applicants, ATT. The former parameter would be particularly interesting in the context
of a hypothetical expansion of the program. On the other hand, the latter parameter is a
simple measure of the effects of this program on its actual participants. In fact, one might
argue that in this context the average treatment effect on the treated is intuitively more
appealing as a target parameter.

Table 8 reproduces the baseline estimates from Aizer et al. (2016) and reports the val-
ues of my diagnostics. While the OLS estimates are positive and statistically significant,
my diagnostics indicate that these results should be approached with caution. Namely,
treated units constitute the majority (or 87.5%) of the sample. What follows, we expect
OLS to be potentially very biased for both ATE and ATT (see Corollaries 2 to 4). Indeed,
my estimates of δ suggest that the difference between the OLS estimand and the average
treatment effect is equal to 65.9–74.5% of the difference between ATC and ATT. The esti-
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Table 8: OLS Estimates of the Effects of Cash Transfers

(1) (2) (3) (4)
Estimates

MP program 0.0157** 0.0158** 0.0182** 0.0167**
(0.0065) (0.0065) (0.0069) (0.0072)

Diagnostics
ŵ0 0.861 0.870 0.784 0.784
ŵ∗0 = ρ̂ 0.875 0.875 0.875 0.875
δ̂ 0.736 0.745 0.659 0.659
δ̂∗ = 2ρ̂− 1 0.750 0.750 0.750 0.750

State fixed effects X
County fixed effects X X
Cohort fixed effects X X X X
State characteristics X X X
County characteristics X
Individual characteristics X X X

Observations 7,860 7,859 7,859 7,857
Notes: These estimates correspond to columns 1 to 4 in panel A of Table 4 in Aizer et al. (2016, p. 952). The de-
pendent variable is log age at death, as reported in the MP records (columns 1 to 3) or on the death certificate
(column 4). State characteristics include manufacturing wages, age of school entry, minimum age for work
permit, an indicator for a continuation school requirement, state laws concerning MP transfers (work require-
ment, reapplication requirement, and maximum amounts for first and second child), and log expenditures on
education, charity, and social programs. County characteristics include average value of farm land, mean and
SD of socio-economic index, poverty rate, female lfp rate, and shares of urban population, widowed women,
children living with single mothers, and children working. Individual characteristics include child age at ap-
plication, age of oldest and youngest child in family, number of letters in name, and indicators for the number
of siblings, the marital status of the mother, and whether date of birth is incomplete. Formulas for w0 and δ
are given in Theorem 1 and Corollary 2, respectively. Cluster-robust standard errors are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

mates of w0 suggest that the difference between OLS and ATT corresponds to 78.4–87.0%
of this measure of heterogeneity, which is—and should typically be—similar to the pro-
portion of treated units. It turns out that in the presence of treatment effect heterogeneity
the OLS estimates of the effects of cash transfers on longevity might be substantially bi-
ased for both of our parameters of interest.

The results in Table 9 suggest that this might indeed be the case. In Table 9, following
Theorem 1, each OLS estimate from Table 8 is represented as a weighted average of two
other estimates, on accepted applicants (ATT) and on rejected applicants (ATC). The es-
timates of the effect on the controls are consistently larger than those of the effect on the
treated. Thus, OLS overestimates both ATE (since δ̂ > 0) and ATT. While my estimates of
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Table 9: Cash Transfers and Treatment Effect Heterogeneity

(1) (2) (3) (4)
MP program 0.0157** 0.0158** 0.0182** 0.0167**

(0.0065) (0.0065) (0.0069) (0.0072)

Decomposition (Theorem 1)
a. ATT 0.0129* 0.0149* 0.0097 0.0089

(0.0076) (0.0081) (0.0093) (0.0093)
b. ŵ1 0.139 0.130 0.216 0.216

c. ATC 0.0162** 0.0160** 0.0206** 0.0188**
(0.0079) (0.0077) (0.0084) (0.0085)

d. ŵ0 0.861 0.870 0.784 0.784

OLS = a · b + c · d 0.0157** 0.0158** 0.0182** 0.0167**
(0.0065) (0.0065) (0.0069) (0.0072)

e. P̂ (d = 1) 0.875 0.875 0.875 0.875
f . P̂ (d = 0) 0.125 0.125 0.125 0.125

ATE = a · e + c · f 0.0133* 0.0150* 0.0110 0.0102
(0.0076) (0.0078) (0.0088) (0.0088)

State fixed effects X
County fixed effects X X
Cohort fixed effects X X X X
State characteristics X X X
County characteristics X
Individual characteristics X X X

Observations 7,860 7,859 7,859 7,857
Notes: See also Aizer et al. (2016) for more details on these data. The dependent variable is log age at death, as
reported in the MP records (columns 1 to 3) or on the death certificate (column 4). State characteristics include
manufacturing wages, age of school entry, minimum age for work permit, an indicator for a continuation school
requirement, state laws concerning MP transfers (work requirement, reapplication requirement, and maximum
amounts for first and second child), and log expenditures on education, charity, and social programs. County
characteristics include average value of farm land, mean and SD of socio-economic index, poverty rate, female
lfp rate, and shares of urban population, widowed women, children living with single mothers, and children
working. Individual characteristics include child age at application, age of oldest and youngest child in family,
number of letters in name, and indicators for the number of siblings, the marital status of the mother, and
whether date of birth is incomplete. Estimates of ATE, ATT, and ATC are sample analogues of τAPE, τAPE|d=1,
and τAPE|d=0, respectively. Formulas for w0 and w1 are given in Theorem 1. Cluster-robust standard errors are
in parentheses. Standard errors for ATE, ATT, and ATC ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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these parameters remain statistically significant in columns 1 and 2, this is no longer the
case in columns 3 and 4, following the inclusion of county fixed effects. Perhaps more im-
portantly, these estimates of ATT are half smaller than the corresponding OLS estimates.
Clearly, this difference is economically quite large.

To assess the robustness of these findings, I report a number of alternative estimates
of the effects of cash transfers in Appendix F. These additional results seem to reinforce
my conclusion. Only one in twelve estimates of the effect on the treated is statistically
different from zero, and four of the insignificant estimates are negative. While it is en-
tirely possible—and perhaps quite likely—that participation in the MP program increased
longevity of the children of its beneficiaries, the OLS estimates in Aizer et al. (2016) are
almost certainly too large. Interestingly, this bias is driven by the implicit OLS weights
on the effects on the treated and controls; these weights turn out to be particularly coun-
terproductive in this application.

4 Extensions

This section discusses several further extensions of my main theoretical results. In partic-
ular, I discuss the implications of my baseline result for regression adjustments to exper-
imental data, fixed effects, difference-in-differences estimation, and the interpretation of
the IV estimand as the local average treatment effect.

Regression Adjustments to Experimental Data

It is important to note that Theorem 1 does not apply to two simplest settings in the
literature on regression adjustments to experimental data: Bernoulli trials and completely
randomized experiments. In these cases, discussed in detail by Imbens and Rubin (2015),
each unit has the same probability of treatment assignment. Consequently, V [p (X)] =

V [p (X) | d = 1] = V [p (X) | d = 0] = 0, and hence Assumption 2 is not satisfied and
Theorem 1 does not apply. Even if it were to apply, however, it would not suggest any
problems with regression adjustments. The reason is simple: in these two settings, τATT =

τATC, and so every convex combination of these two objects is the same. In fact, Imbens
and Rubin (2015) confirm that—when the data come from a Bernoulli trial or a completely
randomized experiment—OLS estimation of the model in (1) is consistent for τATE.

In other experimental settings, however, problems can arise. In particular, Imbens
and Rubin (2015, Ch. 9.6) show that—in a stratified randomized experiment—regression
adjustments with strata fixed effects will be inconsistent for τATE, which is a straight-
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forward application of the result in Angrist (1998). In this case, Assumption 2 is satis-
fied and Theorem 1 also applies. On the other hand, Bugni, Canay, and Shaikh (2017)
demonstrate that in an important special case—when treatment assignment probabilities
are equal in each stratum—this inconsistency disappears. As before, in this special case,
V [p (X)] = V [p (X) | d = 1] = V [p (X) | d = 0] = 0. Thus, again, Assumption 2 is not
satisfied and Theorem 1 does not apply. Also, in this special case, unlike in the general
case studied by Imbens and Rubin (2015, Ch. 9.6), τATT = τATC, so there can be little
reason to expect inconsistency anyway.

Fixed Effects

On the other hand, Theorem 1 does, in fact, apply to fixed effects (FE) estimation of the
basic unobserved effects model, which is similar to (1), but it also includes an unobserved
component (“fixed effect”) for each cross section observation. To see this, note that our
estimand of interest is the same whether we consider FE estimation of the unobserved
effects model or OLS estimation of a model where each unobserved component is treated
as an unknown parameter to be estimated (i.e. the least squares dummy variable model).
In other words, we are interested in the interpretation of τf e in

L
(
y | d, X f e, c1, . . . , cN

)
= τf ed + X f eβ f e +

N

∑
i=1

α f e,ici, (27)

where c1, . . . , cN are indicators for cross section observations; the remaining covariates
are denoted by X f e, and hence X =

(
X f e, c1, . . . , cN

)
.

Clearly, Theorem 1 can be applied directly to equation (27). What follows, τf e is also
identical to the outcome of a particular three-step procedure. In the first step, we obtain
p (X) from a linear projection of d on X f e and the indicator variables, c1, . . . , cN. In the
second step, we obtain τAPE|d=1 and τAPE|d=0, as in (11), from two linear projections of
y on p (X), separately for d = 1 and d = 0. In the third step, we calculate a weighted
average of τAPE|d=1 and τAPE|d=0, where the weights, again, follow from Theorem 1.

The fact that τf e is not, in general, equal to τATE is well established. However, this
particular representation of the FE estimand is new. It differs from and complements the
earlier literature, such as Wooldridge (2005) and Gibbons et al. (2018).
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Difference-In-Differences

It is also useful to discuss the implications of the results in this paper for difference-in-
differences (DD) estimation. In the simplest case, we consider two groups, treated and
controls, and two time periods. No units receive treatment in the first time period. In the
second time period, treated units are exposed to treatment, while control units are not.
Consequently, we are interested in the interpretation of τdd in

L (y | 1, d, g, t) = αdd + τddd + χddg + ψddt, (28)

where g is an indicator for those in the treatment group, t is an indicator for the second
time period, and d = g · t is our interaction term of interest; also, X = (g, t). Thus, if we
apply Theorem 1 to τdd, our “propensity score” has the form

p (X) = L (d | 1, g, t) = αp,dd + χp,ddg + ψp,ddt. (29)

It follows immediately that in this case V [p (X) | d = 1] = 0 but V [p (X) | d = 0] > 0.
Whenever d = 1, p (X) = αp,dd + χp,dd + ψp,dd, and hence for these units there is no
variation in the “propensity score.” What follows, Assumption 2 is not satisfied and
Theorem 1 does not apply. It is possible, however, to relax Assumption 2.

Assumption 5 V [p (X) | d = 1] is zero. V [p (X) | d = 0] is nonzero.

Assumption 5 allows one of the conditional variances to be zero. Of course, the labeling
of groups with d = 1 and d = 0 as “treated” and “controls” is arbitrary, so the zero
conditional variance is allowed for the treated units or for the control units, but not for
both of these groups. Under Assumptions 1 and 5, a new result can be derived.

Theorem 4 (Difference-In-Differences Estimation) Suppose that Assumptions 1 and 5 are
satisfied. Then,

τ = τAPE|d=1.

The proof of Theorem 4 follows directly from the proof of Theorem 1. According to The-
orem 4, if the “propensity score” does not vary in one of the groups, the OLS estimand
will be equal to the effect on this group. As an example, this result is applicable to DD
estimation. In this context, it is well known that a model without additional covariates,
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as in (28), permits identification of the effect on the treated (see, e.g., Heckman, Ichimura,
Smith, and Todd, 1998; Abadie, 2005).19 Theorem 4 reaches the same conclusion.

If, however, X contains additional variables, say X = (g, t, Xdd), then Theorem 4 will
no longer be applicable, as both conditional variances will be nonzero. Instead, we will be
able to use Theorem 1. What follows, with additional covariates and without interactions
between these covariates and d, the DD estimand is equal to a convex combination of
τAPE|d=1 and τAPE|d=0, and not simply to τAPE|d=1. Empirically, however, w1 might often
be close to one. First, in many applications of the difference-in-differences approach, there
are few treated units and many control units; consequently, w1 is also relatively large.
Second, in most applications, we might expect that V [p (X) | d = 0] � V [p (X) | d = 1],
as g and t should have more explanatory power for d = g · t than Xdd; again, this would
increase the OLS weight on the effect on the treated, w1.

Local Average Treatment Effects

A common interpretation of the instrumental variables estimand as the local average
treatment effect, i.e. the average effect on those individuals whose treatment status is af-
fected by the instrumental variable (compliers), is motivated by the results in Imbens and
Angrist (1994). It is often overlooked, however, that these results apply only to models
without covariates, X. On the other hand, Angrist and Imbens (1995) extend this interpre-
tation to saturated models with covariates, and demonstrate that the estimand of interest
is a weighted average of stratum-specific effects. In Theorem 3, I provide an alternative
weighted average representation of the 2SLS estimand. Hence, it might be useful to con-
sider the implications of the results in this paper for the LATE interpretation of IV.

This discussion is facilitated by focusing, as is often the case in the literature on lo-
cal average treatment effects, on a model with a single binary instrumental variable, z.
Hence, we are interested in the interpretation of τiv in

L [y | 1, d (X, z) , X] = αiv + τiv · d (X, z) + Xβiv, (30)

19Recent papers by Borusyak and Jaravel (2017), Abraham and Sun (2018), Athey and Imbens (2018),
de Chaisemartin and D’Haultfœuille (2018), Goodman-Bacon (2018), Hull (2018), and Strezhnev (2018)
study the interpretation of the DD estimand in various extensions of the canonical 2x2 model. In gen-
eral, these interpretations are substantially different than in the canonical case. However, in contrast to this
paper, these authors concentrate most of their attention on models without additional covariates. See also
Callaway and Sant’Anna (2018) for a recent study of identification and estimation of treatment effects using
difference-in-differences with multiple time periods and variation in treatment timing, which also allows
for conditioning on observed covariates.
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where
d (X, z) = L (d | 1, X, z) = αrd + Xβrd + ζrdz. (31)

Since z is now a scalar, we can also write τiv, the IV estimand, as τiv = ζry/ζrd, where ζry

is defined by
L (y | 1, X, z) = αry + Xβry + ζryz. (32)

Because z is also binary, we can provide a new interpretation of the IV estimand by ap-
plying Theorem 1 separately to ζry and ζrd. As before, we need to begin with redefining
several objects of interest. Indeed, let

π = P (z = 1) (33)

denote the unconditional probability that z = 1 and let

r (X) = L (z | 1, X) = αs,iv + Xβs,iv (34)

denote the “instrument propensity score.” Also, we need to define two linear projections
of y on r (X), separately for z = 1 and z = 0, namely

L [y | 1, r (X)] = α1,y + γ1,y · r (X) if z = 1 (35)

and
L [y | 1, r (X)] = α0,y + γ0,y · r (X) if z = 0, (36)

as well as analogous linear projections of d on r (X), namely

L [d | 1, r (X)] = α1,d + γ1,d · r (X) if z = 1 (37)

and
L [d | 1, r (X)] = α0,d + γ0,d · r (X) if z = 0. (38)

Finally, we can use the linear projections in (35) and (36) to define the average partial
effect of z on y as

τAPE,zy =
(
α1,y − α0,y

)
+
(
γ1,y − γ0,y

)
· E [r (X)] (39)

as well as the average partial effect of z on y in group k (k = 0, 1) as

τAPE,zy|z=k =
(
α1,y − α0,y

)
+
(
γ1,y − γ0,y

)
· E [r (X) | z = k] . (40)
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Similarly, using the linear projections in (37) and (38), we can define the average partial
effect of z on d as

τAPE,zd = (α1,d − α0,d) + (γ1,d − γ0,d) · E [r (X)] , (41)

and the average partial effect of z on d in group k (k = 0, 1) as

τAPE,zd|z=k = (α1,d − α0,d) + (γ1,d − γ0,d) · E [r (X) | z = k] . (42)

As before, the linear projections in (34) to (38) are definitional. We only require that these
linear projections exist and are unique, and this is guaranteed by Assumptions 6 and 7.

Assumption 6 (i) E(y2), E(d2), and E(‖X‖2) are finite. (ii) The covariance matrices of X and
(X, z) are nonsingular.

Assumption 7 V [r (X) | z = 1] and V [r (X) | z = 0] are nonzero.

Similar to assumptions underlying Theorems 1 and 3, Assumptions 6 and 7 are generally
innocuous, although Assumption 7 rules out the possibility that z is completely random-
ized and hence r (X) is the same for all units. When z is completely randomized, the IV
estimand is equal to the local average treatment effect, even if we also control for addi-
tional covariates. Finally, we require that z is relevant for treatment, i.e. that it is partially
correlated with d.

Assumption 8 (Instrument Relevance) ζrd is nonzero.

Given that Assumptions 6, 7, and 8 are satisfied, the IV estimand is equal to the ratio
of two weighted averages. The objects defined in (40) appear in the numerator and the
objects defined in (42) appear in the denominator. This interpretation of the instrumental
variables estimand follows from Theorem 5.

Theorem 5 (Interpretation of IV as a Ratio of Weighted Averages) Suppose that Assump-
tions 6, 7, and 8 are satisfied. Then,

τiv =
π ·V [r (X) | z = 1] · τAPE,zy|z=0 + (1− π) ·V [r (X) | z = 0] · τAPE,zy|z=1

π ·V [r (X) | z = 1] · τAPE,zd|z=0 + (1− π) ·V [r (X) | z = 0] · τAPE,zd|z=1
.
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The proof of Theorem 5 follows from the observation that τiv = ζry/ζrd. It is then suf-
ficient to apply Theorem 1 separately to ζry and ζrd, and simplify. In particular, ζry =

π·V[r(X)|z=1]
π·V[r(X)|z=1]+(1−π)·V[r(X)|z=0] · τAPE,zy|z=0 +

(1−π)·V[r(X)|z=0]
π·V[r(X)|z=1]+(1−π)·V[r(X)|z=0] · τAPE,zy|z=1. Also,

ζrd = π·V[r(X)|z=1]
π·V[r(X)|z=1]+(1−π)·V[r(X)|z=0] · τAPE,zd|z=0 +

(1−π)·V[r(X)|z=0]
π·V[r(X)|z=1]+(1−π)·V[r(X)|z=0] · τAPE,zd|z=1.

After providing this interpretation of the IV estimand, it seems sensible to compare τiv

to some benchmark, say

τAPE,zy/zd =
τAPE,zy

τAPE,zd
. (43)

Note that τAPE,zy/zd will be equal to the local average treatment effect if several conditions
are satisfied.20 Namely, we require that z is unconfounded conditional on covariates, X.
Also, the population model for z needs to be linear in X and the population models for
both potential outcomes and potential treatments need to be linear in r (X). In general,
according to Corollary 5, even if these assumptions are satisfied, we cannot expect τiv to
recover the local average treatment effect.

Corollary 5 Suppose that V [r (X) | z = 1] = V [r (X) | z = 0]. Then, Theorem 5 implies that

τiv = τAPE,zy/zd if and only if π = 50% or
τAPE,zy|z=1

τAPE,zd|z=1
=

τAPE,zy|z=0

τAPE,zd|z=0
.

In other words, under the additional restriction that V [r (X) | z = 1] = V [r (X) | z = 0],
we can only expect τiv to recover τAPE,zy/zd if either both instrument levels are received
by equal-sized subpopulations or the effects for groups with z = 1 and z = 0 are the
same. What follows, different instruments, corresponding to different values of π, might
be more or less likely to allow τiv to recover the local average treatment effect.

5 Conclusion

In this paper I study the interpretation of the ordinary and two-stage least squares es-
timands in the homogeneous linear model when treatment effects are in fact heteroge-
neous. This problem is highly relevant for applied researchers who often rely on these
simple estimation methods to provide estimates of the effects of various treatments, even
though treatment effect heterogeneity is often empirically important. How should we
interpret the estimates in these studies? I derive a new theoretical result which demon-
strates that both ordinary and two-stage least squares estimands are equivalent to convex

20See, e.g., Frölich (2007) for a general expression for the local average treatment effect with covariates,
of which τAPE,zy/zd is a special case.
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combinations of two other parameters (different for OLS and 2SLS), which can be inter-
preted as the average treatment effect on the treated and the average treatment effect
on the controls under additional assumptions. Perhaps surprisingly, the weight which
is placed by OLS and 2SLS on the average effect on each group (treated or controls) is
inversely related to the proportion of this group. The more units get treatment, the less
weight is placed on the effect on the treated.

A pessimistic conclusion might be that OLS or 2SLS estimation of the model in (1) is
inappropriate in the presence of treatment effect heterogeneity. However, it is also pos-
sible to present a more pragmatic view of my main result. Indeed, in this paper I derive
a number of corollaries of this result which, in turn, lead to several diagnostic methods
that I recommend to applied researchers. In general, I assume that the researcher is ulti-
mately interested in ATE, ATT, or both, and that she wishes to estimate the model in (1)
using OLS or 2SLS but is concerned about treatment effect heterogeneity. In this case, my
diagnostics are able to detect deviations of the OLS/2SLS weights from the pattern which
would be necessary to consistently estimate a given parameter. Importantly, these diag-
nostics are very easy to implement and interpret; they are bounded between zero and one
in absolute value and they give the proportion of a particular measure of heterogeneity
which contributes to bias. Thus, if a given diagnostic is close to zero, OLS or 2SLS is likely
a reasonable choice; but if a diagnostic is far from zero, other methods should be used. In
an important special case, these diagnostics become particularly simple and immediate to
report. If our goal is to estimate ATT, we should simply report ρ̂, the sample proportion
of treated units; if we wish to estimate ATE, it is instead useful to report δ̂ = 2ρ̂− 1. In
short, OLS and 2SLS are expected to provide a reasonable approximation to ATE if both
groups, treated and controls, are of similar size. If we wish to estimate ATT, it is necessary
that the proportion of treated units is quite small.

A related issue is that of construction of control groups in advance of the empirical
analysis. Often the size of the treated group is essentially fixed, but the number of control
units is easier to manipulate. My main result has important implications for determining
the size of the control group in this context. If we choose ATT as our target parameter, the
number of control units should be as large as possible, and at least several times larger
than the number of treated units. An example is given by the NSW–CPS and NSW–PSID
samples, analyzed by LaLonde (1986), Dehejia and Wahba (1999), Smith and Todd (2005),
and many others. If instead we choose to estimate ATE, the sample proportion of control
units should ideally be equal to the population proportion of treated units.

Future work might consider various extensions of my results, and their usage in test-
ing is one possible avenue. My weighted least squares estimates (Theorem 2) could be
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used in a formal comparison with OLS as a specification test in the spirit of White (1980).
Also, similar to Lochner and Moretti (2015), it seems possible to construct an exogeneity
test which would reweight the OLS estimates of ATT and ATC using the 2SLS weights
and compare the result of this reweighting with the 2SLS estimate.
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Appendix

A Proof of Theorem 1

First, consider equation (4), L (y | 1, d, X) = α + τd + Xβ. By the Frisch–Waugh theorem,
τ = τa, where τa is defined by

L [y | 1, d, p (X)] = αa + τad + γa · p (X) . (44)

Second, notice that (44) is a linear projection of y on two variables: one binary, d, and one
arbitrarily discrete or continuous, p (X). We can therefore use the following result from
Elder, Goddeeris, and Haider (2010):

Lemma 1 (Elder et al., 2010) Let L (y | 1, d, x) = αe + τed + βex denote the linear projection
of y on d (a binary variable) and x (a single, possibly continuous, control variable) and let V (·),
Cov (·), V (· | ·), and Cov (· | ·) denote the variance, the covariance, the conditional variance,
and the conditional covariance, respectively. Then,

τe =
ρ ·V (x | d = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· θ1

+
(1− ρ) ·V (x | d = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· θ0,

where
θ1 =

Cov (d, y)
V (d)

− Cov (d, x)
V (d)

· Cov (x, y | d = 1)
V (x | d = 1)

and
θ0 =

Cov (d, y)
V (d)

− Cov (d, x)
V (d)

· Cov (x, y | d = 0)
V (x | d = 0)

.

Combining the two pieces gives

τ =
ρ ·V [p (X) | d = 1]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· θ∗1

+
(1− ρ) ·V [p (X) | d = 0]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· θ∗0 , (45)

where
θ∗1 =

Cov (d, y)
V (d)

− Cov [d, p (X)]

V (d)
· Cov [p (X) , y | d = 1]

V [p (X) | d = 1]
(46)
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and
θ∗0 =

Cov (d, y)
V (d)

− Cov [d, p (X)]

V (d)
· Cov [p (X) , y | d = 0]

V [p (X) | d = 0]
. (47)

Third, notice that θ∗1 = τAPE|d=0 and θ∗0 = τAPE|d=1, as defined in (11). Indeed,

Cov (d, y)
V (d)

= E (y | d = 1)− E (y | d = 0) (48)

and also
Cov [d, p (X)]

V (d)
= E [p (X) | d = 1]− E [p (X) | d = 0] . (49)

Moreover, for j = 0, 1,
Cov [p (X) , y | d = j]

V [p (X) | d = j]
= γj (50)

where γ1 and γ0 are defined in (8) and (9), respectively. Because

E (y | d = 1)− E (y | d = 0) = {E [p (X) | d = 1]− E [p (X) | d = 0]} · γ1

+ (α1 − α0) + (γ1 − γ0) · E [p (X) | d = 0] (51)

and also

E (y | d = 1)− E (y | d = 0) = {E [p (X) | d = 1]− E [p (X) | d = 0]} · γ0

+ (α1 − α0) + (γ1 − γ0) · E [p (X) | d = 1] , (52)

where again α1 and α0 are defined in (8) and (9), we get the result that θ∗1 = τAPE|d=0 and
θ∗0 = τAPE|d=1. Note that equations (51) and (52) are special cases of the Oaxaca–Blinder
decomposition (Blinder, 1973; Oaxaca, 1973; Fortin, Lemieux, and Firpo, 2011). Finally,
combining the three pieces gives

τ =
ρ ·V [p (X) | d = 1]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=0

+
(1− ρ) ·V [p (X) | d = 0]

ρ ·V [p (X) | d = 1] + (1− ρ) ·V [p (X) | d = 0]
· τAPE|d=1, (53)

which completes the proof. �
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B Proportion of Treated Units and OLS Weights

To show formally that w1 is decreasing in ρ and that w0 is increasing in ρ, it is convenient
to additionally assume that E (d | X) is linear in X. This restriction arises naturally in the
analysis of saturated models by Angrist (1998) and Humphreys (2009). It is also used by
Rhodes (2010), Aronow and Samii (2016), and Abadie et al. (2017). In the present context
there are two reasons why this linearity assumption is useful. First, it allows us to rewrite
w0 and w1 solely in terms of unconditional expectations of p (X) and its powers. Second,
it simplifies calculation of the derivatives of w0 and w1 with respect to the intercept of
the propensity score model. Imposing a shift on this intercept is equivalent to changing ρ

by a small amount. It turns out that Theorem 1 and this additional linearity assumption
imply the following result.

Corollary 6 Suppose that E (d | X) = p (X) = αp + Xβp. Then, Theorem 1 implies that

dw1

dαp
< 0 and

dw0

dαp
> 0.

Proof of Corollary 6. For simplicity, we first focus on a0 and a1, which we define as
a0 = ρ · V [p (X) | d = 1] and a1 = (1− ρ) · V [p (X) | d = 0]. What follows, w0 = a0

a0+a1

and w1 = a1
a0+a1

. It turns out that we can rewrite a0 as

a0 = E (d) · E
(
{p (X)− E [p (X) | d = 1]}2 | d = 1

)
= E (d) ·

(
E
[

p (X)2 | d = 1
]
− {E [p (X) | d = 1]}2

)
= E (d) ·

E
[

p (X)2 d
]

E (d)
−
{

E [p (X) d]
E (d)

}2


= E
[

p (X)2 d
]
− {E [p (X) d]}2

E (d)

= E
[

p (X)2 E (d | X)
]
− {E [p (X)E (d | X)]}2

E [E (d | X)]

= E
[

p (X)3
]
−

{
E
[

p (X)2
]}2

E [p (X)]
. (54)

55



Then, taking the derivative of a0 with respect to αp gives

da0

dαp
= 3E

[
p (X)2

]
−

4E
[

p (X)2
]

E [p (X)]

E [p (X)]
+

{
E
[

p (X)2
]}2

E [p (X)]2

= −E
[

p (X)2
]
+

{
E
[

p (X)2
]}2

E [p (X)]2

=

{
E
[

p (X)2
]}2
− E

[
p (X)2

]
E [p (X)]2

E [p (X)]2

=
E
[

p (X)2
] {

E
[

p (X)2
]
− E [p (X)]2

}
E [p (X)]2

=
E
[

p (X)2
]

V [p (X)]

E [p (X)]2
> 0. (55)

Similarly,

a1 = [1− E (d)] · E
(
{p (X)− E [p (X) | d = 0]}2 | d = 0

)
= [1− E (d)] ·

(
E
[

p (X)2 | d = 0
]
− {E [p (X) | d = 0]}2

)
= [1− E (d)] ·

E
[

p (X)2
]
− E

[
p (X)2 d

]
1− E (d)

−
{

E [p (X)]− E [p (X) d]
1− E (d)

}2


= E
[

p (X)2
]
− E

[
p (X)2 d

]
− {E [p (X)]− E [p (X) d]}2

1− E (d)

= E
[

p (X)2
]
− E

[
p (X)2 E (d | X)

]
− {E [p (X)]− E [p (X)E (d | X)]}2

1− E [E (d | X)]

= E
[

p (X)2
]
− E

[
p (X)3

]
−

{
E [p (X)]− E

[
p (X)2

]}2

1− E [p (X)]
(56)

and

da1

dαp
= 2E [p (X)]− 3E

[
p (X)2

]
−

{
E [p (X)]− E

[
p (X)2

]}2

{1− E [p (X)]}2

−
2 · {1− E [p (X)]} · {1− 2E [p (X)]} ·

{
E [p (X)]− E

[
p (X)2

]}
{1− E [p (X)]}2

56



=
E [p (X)]2 − E

[
p (X)2

]
{1− E [p (X)]}2

+
2E [p (X)]E

[
p (X)2

]
− 2E [p (X)]3

{1− E [p (X)]}2

+
E
[

p (X)2
]

E [p (X)]2 −
{

E
[

p (X)2
]}2

{1− E [p (X)]}2

=
−V [p (X)] ·

{
1− 2E [p (X)] + E

[
p (X)2

]}
{1− E [p (X)]}2

=
−V [p (X)] · E

{
[1− p (X)]2

}
{1− E [p (X)]}2 < 0. (57)

Finally, it follows that

dw1

dαp
< 0 and

dw0

dαp
> 0, (58)

since w0 = a0
a0+a1

, w1 = a1
a0+a1

, a0 > 0, a1 > 0, da0
dαp

> 0, and da1
dαp

< 0. �
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C Implicit Residualization

To gain further intuition for Theorem 1 it is useful to relate τ, the ordinary least squares
estimand, to partial residualization that is implicit in least squares estimation. In other
words, after projecting y on d and X, we can subtract Xβ from y. Since the coefficient
on d will be the same in the linear projection of the new variable on d, we might get
further insight into τ by studying the interpretation of this new variable—the partially
residualized y. This derivation also leads to an alternative proof of Theorem 1.

Proof of Theorem 1. As before, consider equation (4), L (y | 1, d, X) = α + τd + Xβ, and
note that τ = τa, where τa is defined by L [y | 1, d, p (X)] = αa + τad + γa · p (X). We can
write this linear projection in error form as

y = αa + τad + γa · p (X) + υ. (59)

We also consider separate linear projections for d = 1 and d = 0, namely

L [y | 1, p (X)] = α1 + γ1 · p (X) if d = 1 (60)

and
L [y | 1, p (X)] = α0 + γ0 · p (X) if d = 0. (61)

Henceforth, to simplify notation I will use l1(X) to denote α1 + γ1 · p (X) and l0(X) to
denote α0 + γ0 · p (X). To understand the relationship between γa, γ1, and γ0, we can use
the following result from Deaton (1997) and Solon et al. (2015):

Lemma 2 (Deaton, 1997; Solon et al., 2015) Let L (y | 1, d, x) = αe + τed + βex denote the
linear projection of y on d (binary) and x (possibly continuous). Then,

βe =
ρ ·V (x | d = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· β1,e

+
(1− ρ) ·V (x | d = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· β0,e,

where β1,e and β0,e are defined by

L (y | 1, x) = α1,e + β1,ex if d = 1

and
L (y | 1, x) = α0,e + β0,ex if d = 0.
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An implication of Lemma 2 is that

γa = w0 · γ1 + w1 · γ0. (62)

Next, we can rewrite equation (59) as

y− w0 · γ1 · p (X)− w1 · γ0 · p (X) = αa + τad + υ

= E (y)− τa · E (d)− γa · E [p (X)]

+ τad + υ. (63)

Moreover, it turns out that

α1 = E (y | d = 1)− γ1 · E [p (X) | d = 1] (64)

and also
α0 = E (y | d = 0)− γ0 · E [p (X) | d = 0] . (65)

What follows,

y− w0 · l1(X)− w1 · l0(X) = E (y)− w0 · E (y | d = 1)− w1 · E (y | d = 0)

+ w0 · γ1 · {E [p (X) | d = 1]− E [p (X)]}
+ w1 · γ0 · {E [p (X) | d = 0]− E [p (X)]}
− τa · E (d) + τad + υ. (66)

In other words, in a linear projection of y− w0 · l1(X)− w1 · l0(X) on d, the coefficient on
d is equal to τa and the intercept is equal to E (y)−w0 · E (y | d = 1)−w1 · E (y | d = 0) +
w0 ·γ1 · {E [p (X) | d = 1]− E [p (X)]}+w1 ·γ0 · {E [p (X) | d = 0]− E [p (X)]}− τa ·E (d).
However, τa must also be equal to the difference in expected values of the dependent vari-
able for d = 1 and d = 0. Using (12) and (13), we can write these expected values as

E [y− w0 · l1(X)− w1 · l0(X) | d = 1] = w1 · τAPE|d=1 (67)

and
E [y− w0 · l1(X)− w1 · l0(X) | d = 0] = −w0 · τAPE|d=0. (68)

Thus,
τ = τa = w1 · τAPE|d=1 + w0 · τAPE|d=0, (69)

which completes the proof. �
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D Comparison with the Result for Saturated Models

The baseline result in Angrist (1998) is derived for a model with two strata, where x
indicates stratum membership. The result is that if L (y | 1, d, x) = αg + τgd + βgx, then

τg =
P (x = 0) ·V (d | x = 0)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ0

+
P (x = 1) ·V (d | x = 1)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ1, (70)

where τ1 and τ0 denote the stratum-specific effects. Theorem 1 might appear at first sight
to be similar to this result. There are, however, two major differences between these for-
mulations: first, Theorem 1 conditions on d, while Angrist (1998) conditions on x, and
therefore does not specify his result in terms of group-specific average partial effects; sec-
ond, Angrist (1998) does not recover a pattern of “weight reversal,” whose manifestation
is the main result of this paper. In this appendix I show that equation (70), i.e. the baseline
result in Angrist (1998), can be derived from a special case of Theorem 1 (or Lemma 1).

If we apply Lemma 1 to τg in L (y | 1, d, x) = αg + τgd + βgx, i.e. to the two-strata
model in Angrist (1998), we get

τg =
ρ ·V (x | d = 1) · [P (x = 0 | d = 0) · τ0 + P (x = 1 | d = 0) · τ1]

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

+
(1− ρ) ·V (x | d = 0) · [P (x = 0 | d = 1) · τ0 + P (x = 1 | d = 1) · τ1]

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

=
ρ ·V (x | d = 1) · P (x = 0 | d = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· τ0

+
(1− ρ) ·V (x | d = 0) · P (x = 0 | d = 1)
ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

· τ0

+
ρ ·V (x | d = 1) · P (x = 1 | d = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· τ1

+
(1− ρ) ·V (x | d = 0) · P (x = 1 | d = 1)
ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)

· τ1, (71)

which can be further rearranged using Bayes’ theorem. Indeed,

τg =
P (x = 0) ·V (d | x = 0) · P (d = 1 | x = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ0
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+
P (x = 0) ·V (d | x = 0) · P (d = 0 | x = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ0

+
P (x = 1) ·V (d | x = 1) · P (d = 1 | x = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ1

+
P (x = 1) ·V (d | x = 1) · P (d = 0 | x = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ1

=
P (x = 0) ·V (d | x = 0)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ0

+
P (x = 1) ·V (d | x = 1)

ρ ·V (x | d = 1) + (1− ρ) ·V (x | d = 0)
· P (x = 0) · P (x = 1)

ρ · (1− ρ)
· τ1

=
P (x = 0) ·V (d | x = 0)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ0

+
P (x = 1) ·V (d | x = 1)

P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1)
· τ1, (72)

where the last equality, again, follows from Bayes’ theorem. More precisely,

ρ · (1− ρ) · ρ ·V (x | d = 1)
P (x = 0) · P (x = 1)

= (1− ρ) · P (d = 1 | x = 1) · P (d = 1 | x = 0)

= P (x = 0) ·V (d | x = 0) · P (d = 1 | x = 1)

+ P (x = 1) ·V (d | x = 1) · P (d = 1 | x = 0)

= λ1 (73)

and also

ρ · (1− ρ) · (1− ρ) ·V (x | d = 0)
P (x = 0) · P (x = 1)

= ρ · P (d = 0 | x = 1) · P (d = 0 | x = 0)

= P (x = 0) ·V (d | x = 0) · P (d = 0 | x = 1)

+ P (x = 1) ·V (d | x = 1) · P (d = 0 | x = 0)

= λ0, (74)

which leads to

λ0 + λ1 = P (x = 0) ·V (d | x = 0) + P (x = 1) ·V (d | x = 1) . (75)

The equivalence between equations (70) and (72) confirms that the result in Angrist (1998)
can be derived from a special case of Lemma 1, in which both d and x are binary.
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E Implementation in Stata

This appendix discusses possible applications of my theoretical results in Stata. I pro-
vide separate implementations of Theorems 1, 2, 3, and 5. Additionally, I discuss how
to implement my diagnostic tools for undesirable weighting of heterogeneous treatment
effects in OLS and 2SLS.

Theorem 1 in Stata

Let ovar be the name of the outcome variable, let tvar be the name of the binary variable
of interest (“treatment”), and let xvars be the list of names of other covariates. Consider
the following code in Stata:

version 14.2

regress ovar tvar xvars

keep if e(sample)

regress tvar xvars

predict ps

regress ovar ps if tvar==1

predict ot

regress ovar ps if tvar==0

predict oc

generate te = ot-oc

summarize te if tvar==1

scalar att = r(mean)

summarize te if tvar==0

scalar atc = r(mean)

summarize ps if tvar==1

scalar v1 = r(Var)*((r(N)-1)/r(N))

summarize ps if tvar==0

scalar v0 = r(Var)*((r(N)-1)/r(N))

summarize tvar

scalar p1 = r(mean)

scalar p0 = 1-p1

scalar w1 = (p0*v0)/(p0*v0+p1*v1)

scalar w0 = (p1*v1)/(p0*v0+p1*v1)

scalar ols = att*w1+atc*w0
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Following Theorem 1, the outcome of this procedure (ols) will be identical to the coeffi-
cient on tvar in:

regress ovar tvar xvars

Diagnostics for OLS in Stata

Let ovar be the name of the outcome variable, let tvar be the name of the binary variable
of interest (“treatment”), and let xvars be the list of names of other covariates. Consider
the following code in Stata:

version 14.2

regress ovar tvar xvars

keep if e(sample)

regress tvar xvars

predict ps

summarize ps if tvar==1

scalar v1 = r(Var)*((r(N)-1)/r(N))

summarize ps if tvar==0

scalar v0 = r(Var)*((r(N)-1)/r(N))

summarize tvar

scalar p1 = r(mean)

scalar p0 = 1-p1

scalar w1 = (p0*v0)/(p0*v0+p1*v1)

scalar w0 = (p1*v1)/(p0*v0+p1*v1)

scalar delta = p1-w1

Following Theorem 1 and Corollaries 2 and 4, w0 and δ, my diagnostics for undesirable
weighting of heterogeneous treatment effects in OLS with ATT and ATE as our target
parameters, respectively, correspond to w0 and delta above.

Theorem 2 in Stata

Let ovar be the name of the outcome variable, let tvar be the name of the binary variable
of interest (“treatment”), and let xvars be the list of names of other covariates. Consider
the following code in Stata:
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version 14.2

regress ovar tvar xvars

keep if e(sample)

regress tvar xvars

predict ps

summarize ps if tvar==1

scalar v1 = r(Var)*((r(N)-1)/r(N))

summarize ps if tvar==0

scalar v0 = r(Var)*((r(N)-1)/r(N))

summarize tvar

scalar p1 = r(mean)

scalar p0 = 1-p1

scalar w1 = (p0*v0)/(p0*v0+p1*v1)

scalar w0 = (p1*v1)/(p0*v0+p1*v1)

regress ovar tvar ps [pw = tvar*(p0/w0)+(1-tvar)*(p1/w1)]

Following Theorem 2, the coefficient on tvar in this regression will be identical to the
outcome (ate) of the following procedure:

regress ovar ps if tvar==1

predict ot

regress ovar ps if tvar==0

predict oc

generate te = ot-oc

summarize te

scalar ate = r(mean)

Theorem 3 in Stata

Let ovar be the name of the outcome variable, let tvar be the name of the binary variable
of interest (“treatment”), let xvars be the list of names of other covariates, and let zvars
be the list of names of instruments for tvar. Consider the following code in Stata:

version 14.2

ivregress 2sls ovar xvars (tvar = zvars)

keep if e(sample)
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regress tvar xvars zvars

predict cf, residuals

regress tvar xvars cf

predict ps

regress ovar ps if tvar==1

predict ot

regress ovar ps if tvar==0

predict oc

generate te = ot-oc

summarize te if tvar==1

scalar att = r(mean)

summarize te if tvar==0

scalar atc = r(mean)

summarize ps if tvar==1

scalar v1 = r(Var)*((r(N)-1)/r(N))

summarize ps if tvar==0

scalar v0 = r(Var)*((r(N)-1)/r(N))

summarize tvar

scalar p1 = r(mean)

scalar p0 = 1-p1

scalar w1 = (p0*v0)/(p0*v0+p1*v1)

scalar w0 = (p1*v1)/(p0*v0+p1*v1)

scalar tsls = att*w1+atc*w0

Following Theorem 3, the outcome of this procedure (tsls) will be identical to the coeffi-
cient on tvar in:

ivregress 2sls ovar xvars (tvar = zvars)

Diagnostics for 2SLS in Stata

Let ovar be the name of the outcome variable, let tvar be the name of the binary variable
of interest (“treatment”), let xvars be the list of names of other covariates, and let zvars
be the list of names of instruments for tvar. Consider the following code in Stata:

version 14.2
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ivregress 2sls ovar xvars (tvar = zvars)

keep if e(sample)

regress tvar xvars zvars

predict cf, residuals

regress tvar xvars cf

predict ps

summarize ps if tvar==1

scalar v1 = r(Var)*((r(N)-1)/r(N))

summarize ps if tvar==0

scalar v0 = r(Var)*((r(N)-1)/r(N))

summarize tvar

scalar p1 = r(mean)

scalar p0 = 1-p1

scalar w1 = (p0*v0)/(p0*v0+p1*v1)

scalar w0 = (p1*v1)/(p0*v0+p1*v1)

scalar delta = p1-w1

Following Theorem 3 and fn. 14, w0,ts and δts, my diagnostics for undesirable weighting
of heterogeneous treatment effects in 2SLS with ATT and ATE as our target parameters,
respectively, correspond to w0 and delta above.

Theorem 5 in Stata

Let ovar be the name of the outcome variable, let tvar be the name of the independent
variable of interest (“treatment”), let xvars be the list of names of other covariates, and let
zvar be the name of the binary instrument for tvar. Consider the following code in Stata:

version 14.2

ivregress 2sls ovar xvars (tvar = zvar)

keep if e(sample)

regress zvar xvars

predict ips

regress ovar ips if zvar==1

predict o1

regress ovar ips if zvar==0

predict o0
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generate oe = o1-o0

summarize oe if zvar==1

scalar oe1 = r(mean)

summarize oe if zvar==0

scalar oe0 = r(mean)

regress tvar ips if zvar==1

predict t1

regress tvar ips if zvar==0

predict t0

generate te = t1-t0

summarize te if zvar==1

scalar te1 = r(mean)

summarize te if zvar==0

scalar te0 = r(mean)

summarize ips if zvar==1

scalar v1 = r(Var)*((r(N)-1)/r(N))

summarize ips if zvar==0

scalar v0 = r(Var)*((r(N)-1)/r(N))

summarize zvar

scalar p1 = r(mean)

scalar p0 = 1-p1

scalar iv = (p1*v1*oe0+p0*v0*oe1)/(p1*v1*te0+p0*v0*te1)

Following Theorem 5, the outcome of this procedure (iv) will be identical to the coeffi-
cient on tvar in:

ivregress 2sls ovar xvars (tvar = zvar)
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F Robustness Checks

Table 10: Alternative Estimates of the Effects of NSW Program

(1) (2) (3) (4)
Matching on the LPM propensity score

ATE –9,227*** –7,504** –6,245* –6,581*
(2,388) (3,518) (3,382) (3,370)

ATT –3,282*** 257 975 –892
(863) (694) (813) (906)

ATC –9,295*** –7,594** –6,328* –6,646*
(2,415) (3,556) (3,420) (3,409)

Matching on the logit propensity score
ATE –6,682** –7,683*** –4,187 –2,961

(2,773) (2,421) (3,012) (11,900)
ATT –3,855*** 265 2,117** 2,032**

(854) (695) (856) (860)
ATC –6,714** –7,775*** –4,260 –3,018

(2,804) (2,448) (3,046) (12,037)

Oaxaca–Blinder
ATE –6,132*** –6,218** –4,952* –4,930

(1,644) (2,534) (2,996) (3,073)
ATT –3,417*** –69 623 796

(628) (598) (628) (639)
ATC –6,163*** –6,289** –5,017* –4,996

(1,662) (2,561) (3,030) (3,108)

Demographic controls X X X
“Earnings in 1974” X
Earnings in 1975 X X X

Observations 16,177 16,177 16,177 16,177

Notes: See also LaLonde (1986), Dehejia and Wahba (1999), and Smith and Todd (2005) for more
details on these data. The dependent variable is earnings in 1978. Demographic controls include age,
age squared, years of schooling, and indicators for married, high school dropout, black, and Hispanic.
For treated individuals, “Earnings in 1974” correspond to real earnings in months 13–24 prior to
randomization, which overlaps with calendar year 1974 for a number of individuals. See Smith and
Todd (2005) for further discussion. For “Matching on the LPM propensity score” and “Matching
on the logit propensity score,” estimation is based on nearest-neighbor matching on the estimated
propensity score (with a single match). The propensity score is estimated using a linear probability
model (LPM) or a logit model. For “Oaxaca–Blinder,” estimation is based on the estimator discussed
in Kline (2011). Huber–White standard errors (Oaxaca–Blinder) and Abadie–Imbens standard errors
(matching) are in parentheses. Abadie–Imbens standard errors ignore that the propensity score is
estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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Table 11: Alternative Estimates of the Effects of Medieval Pogroms

1920s pogroms NSDAP 1928 DVFP 1924 Synagogue
attacks

Matching on the LPM propensity score
ATE 0.0563** 0.0106* 0.0163 0.1079*

(0.0225) (0.0063) (0.0128) (0.0561)
ATT 0.0647*** 0.0084 0.0100 0.1043*

(0.0236) (0.0061) (0.0131) (0.0584)
ATC 0.0341 0.0162* 0.0329* 0.1194*

(0.0268) (0.0099) (0.0186) (0.0706)

Matching on the logit propensity score
ATE 0.0531** 0.0095 0.0093 0.1295**

(0.0222) (0.0061) (0.0130) (0.0556)
ATT 0.0647*** 0.0069 0.0093 0.1374**

(0.0236) (0.0062) (0.0138) (0.0573)
ATC 0.0227 0.0164* 0.0092 0.1045

(0.0261) (0.0087) (0.0155) (0.0725)

Oaxaca–Blinder
ATE 0.0578** 0.0128** 0.0131 0.1129**

(0.0266) (0.0052) (0.0104) (0.0469)
ATT 0.0555* 0.0117** 0.0118 0.1084**

(0.0295) (0.0051) (0.0104) (0.0457)
ATC 0.0639*** 0.0155*** 0.0164 0.1269**

(0.0217) (0.0060) (0.0113) (0.0544)

Log of population in 1924 X
Log of population in 1925 X
Log of population in 1928 X
Log of population in 1933 X
% Jewish in 1925 X X X
% Jewish in 1933 X
% Protestant in 1925 X X X X

Observations 320 325 325 278

Notes: See also Voigtländer and Voth (2012) for more details on these data. The dependent variables
are an indicator for pogroms during the 1920s, the vote share of the NSDAP in the May 1928 election,
the vote share of the Deutsch-Völkische Freiheitspartei in the May 1924 election, and an indicator for
whether a synagogue was destroyed or damaged in the 1938 Reichskristallnacht. For “Matching on the
LPM propensity score” and “Matching on the logit propensity score,” estimation is based on nearest-
neighbor matching on the estimated propensity score (with a single match). The propensity score is
estimated using a linear probability model (LPM) or a logit model. For “Oaxaca–Blinder,” estimation is
based on the estimator discussed in Kline (2011). Cluster-robust standard errors (Oaxaca–Blinder) and
Abadie–Imbens standard errors (matching) are in parentheses. Abadie–Imbens standard errors ignore
that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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Table 12: Alternative Estimates of the Effects of Catholic Schooling

(1) (2) (3) (4)
Matching on the LPM propensity score

ATE 1.31** 2.10*** — —
(0.56) (0.51) — —

ATT 1.58*** 1.44*** — —
(0.41) (0.44) — —

ATC 1.29** 2.15*** — —
(0.58) (0.53) — —

Matching on the logit propensity score
ATE 1.75*** 2.10*** — —

(0.54) (0.50) — —
ATT 1.48*** 1.36*** — —

(0.40) (0.43) — —
ATC 1.76*** 2.15*** — —

(0.55) (0.52) — —

Oaxaca–Blinder
ATE 1.80*** 1.95*** — —

(0.43) (0.44) — —
ATT 1.47*** 1.59*** — —

(0.39) (0.39) — —
ATC 1.82*** 1.98*** — —

(0.44) (0.45) — —

Heckman’s two-step procedure
ATE — — –0.95 0.17

— — (1.62) (1.62)
ATT — — 3.99*** 4.90***

— — (1.39) (1.35)
ATC — — –1.27 –0.13

— — (1.72) (1.72)

Baseline controls X X X X
Demographic controls X X

Observations 7,444 7,306 7,444 7,306

Notes: See also Altonji et al. (2005) for more details on these data. The dependent variable is a
standardized twelfth grade math test score. Baseline controls include mother’s education, father’s
education, and log of family income. Demographic controls include indicators for female, Asian,
black, Hispanic, a married parent, and a single-mother household. In columns 3 and 4, instrumen-
tal variables for Catholic schooling include the following indicators for distance from the nearest
Catholic high school: less than 1 mile, between 1 and 3 miles, between 3 and 6 miles, and between 6
and 10 miles. For “Matching on the LPM propensity score” and “Matching on the logit propensity
score,” estimation is based on nearest-neighbor matching on the estimated propensity score (with
a single match). The propensity score is estimated using a linear probability model (LPM) or a
logit model. For “Oaxaca–Blinder,” estimation is based on the estimator discussed in Kline (2011).
For “Heckman’s two-step procedure,” estimation is based on the estimator discussed in Wooldridge
(2015). Huber–White standard errors (Oaxaca–Blinder), Abadie–Imbens standard errors (matching),
and bootstrap standard errors (Heckman’s two-step procedure) are in parentheses. Abadie–Imbens
standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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Table 13: Alternative Estimates of the Effects of Cash Transfers

(1) (2) (3) (4)
Matching on the LPM propensity score

ATE 0.0110 0.0147* 0.0022 0.0011
(0.0070) (0.0089) (0.0099) (0.0098)

ATT 0.0106 0.0143 –0.0002 –0.0002
(0.0073) (0.0096) (0.0109) (0.0107)

ATC 0.0144** 0.0179** 0.0194** 0.0100
(0.0059) (0.0082) (0.0084) (0.0085)

Matching on the logit propensity score
ATE 0.0111 0.0183** –0.0019 –0.0054

(0.0073) (0.0081) (0.0166) (0.0166)
ATT 0.0107 0.0181** –0.0043 –0.0105

(0.0077) (0.0087) (0.0187) (0.0186)
ATC 0.0145** 0.0193** 0.0152* 0.0309***

(0.0059) (0.0083) (0.0085) (0.0083)

Oaxaca–Blinder
ATE 0.0105* 0.0100 0.0140 0.0130

(0.0063) (0.0065) (0.0100) (0.0105)
ATT 0.0096 0.0092 0.0133 0.0124

(0.0064) (0.0068) (0.0109) (0.0115)
ATC 0.0164** 0.0160*** 0.0184*** 0.0170**

(0.0069) (0.0061) (0.0071) (0.0073)

State fixed effects X
County fixed effects X X
Cohort fixed effects X X X X
State characteristics X X X
County characteristics X
Individual characteristics X X X

Observations 7,860 7,859 7,859 7,857

Notes: See also Aizer et al. (2016) for more details on these data. The dependent variable is log age
at death, as reported in the MP records (columns 1 to 3) or on the death certificate (column 4). State
characteristics include manufacturing wages, age of school entry, minimum age for work permit, an
indicator for a continuation school requirement, state laws concerning MP transfers (work requirement,
reapplication requirement, and maximum amounts for first and second child), and log expenditures
on education, charity, and social programs. County characteristics include average value of farm land,
mean and SD of socio-economic index, poverty rate, female lfp rate, and shares of urban population,
widowed women, children living with single mothers, and children working. Individual characteristics
include child age at application, age of oldest and youngest child in family, number of letters in name,
and indicators for the number of siblings, the marital status of the mother, and whether date of birth
is incomplete. For “Matching on the LPM propensity score” and “Matching on the logit propensity
score,” estimation is based on nearest-neighbor matching on the estimated propensity score (with a
single match). The propensity score is estimated using a linear probability model (LPM) or a logit model.
For “Oaxaca–Blinder,” estimation is based on the estimator discussed in Kline (2011). Cluster-robust
standard errors (Oaxaca–Blinder) and Abadie–Imbens standard errors (matching) are in parentheses.
Abadie–Imbens standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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