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Abstract

This paper considers the impact of heterogeneous gain learning in an as-
set pricing model. A relatively stylized model is shown to generate persis-
tent swings of asset prices from their fundamental values which replicates long
range samples of U.S financial data. The detailed mechanisms of the learn-
ing models are then explored. Evidence suggests that agents’ perceptions of
risk and its dynamics and persistence are important in generating appropriate
price/fundamental dynamics. Agents putting large amounts of weight on the
recent past in their volatility models control a large fraction of wealth, and are
important in perpetuating the volatility magnifying dynamics of the market.
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1 Introduction

Many asset prices exhibit large and highly persistent deviations from from their funda-
mental values yielding potential long run predictability.1 The fact that asset prices can
move from simple benchmark rational pricing levels, and then stay far from these lev-
els for some time is a major puzzle. The swings can be both short or long in duration,
and their time series show few regular patterns when one analyzes their long range be-
havior. Many explanations have been proposed involving varying levels of rationality,
knowledge, and learning, but no one explanation has dominated the debate. This paper
explores an under parameterized learning model with heterogeneous gain parameters
and traders using differing perspectives on history.2

Gain parameters are present in almost all learning models, and they control the weight
given to new observations as learners update their parameters. They can be thought of
as controlling how much data from the past agents use to estimate new forecast parame-
ters. They also can be interpreted as related to the signal to noise ratio in an unobserved
state variable world.3 Learning models can also entertain both decreasing and constant
gain levels. In decreasing gain models, the weight on new observations approaches zero
as time passes, often generating useful convergence results. Constant gain learners al-
ways are forgetting some data from the distant past, and they continue to give new data
points the same weight as they come in. Committing to a fixed gain level locks agents
onto a certain belief about the overall stationarity of the time series they are observing.
Entertaining various beliefs about gain parameters would be suggested in a world in
which priors about data stationarity, persistence, and long range dynamic features may
be spread over many possibilities. Also, the data series may be short enough, and the fea-
tures long enough, that the data alone does not lead to much convergence in these beliefs.
In other words, the belief that we are in a “new world,” and the last 5 years of data are
all that is relevant will always hold some appeal in such a world, and statistical evidence
firmly rejecting this idea may be very weak.

It is not hard to find candidate time series that appear very persistent, but the persis-
1 The early evidence is in Shiller (1981) and Campbell & Shiller (1988). For a textbook treatment see Campbell, Lo & MacKinlay

(1996). A recent survey on this literature is contained in Lettau & Ludvigson (2010).
2 The area of learning models and asset pricing is very large. A recent survey by Pastor & Veronesi (2009) is a good starting place. A

more general survey covering the broader macro economic context would be Evans & Honkapohja (2008). All of these are influenced
by the early work collected in Phelps (1970) and Frydman & Phelps (1983). Also, Timmerman (1993), and Hong & Stein (1999) are
early examples of learning models capable of generating market volatility which will be a key aspect of the model presented here.
Frydman & Goldberg (2007) is another summary of the adaptive learning approach, that also presents models which display long
persistent deviations in foreign exchange rates from PPP benchmarks. A recent model with Bayesian learning agents which replicates
movements in long run price/dividend ratios is Adam & Marcet (2010a).

3In the traditional Kalman filter the gain parameter is explicitly defined by the structure of the model.
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tent behavior is often irregular and appears at horizons that are long relative to the sample
length. This paper will concentrate specifically on price/dividend ratios from U.S. stock
markets, but there are many others. Inflation rates, interest rates, and real exchange rates,
are all possible candidates for this. More subtly, the levels of volatility in financial mar-
kets also demonstrate this form of “extreme persistence.” In all cases an argument could
be made for some very persistent process that could formally be a long memory, or frac-
tionally integrated system, or there may simply be infrequent changes in regime. In a
learning environment agents may be confused between these possibilities both because
definitive statistical tests do not exist, or sample sizes may be too short.

This paper borrows from many parts of the learning literature. At the core agents will
be using systems derived from adaptive expectations and recursive least squares algo-
rithms.4 Agents chose from a set of algorithms all estimated using varying gain levels.
Agents also choose from a discrete set of possible forecasting rules designed to span the
space of reasonable strategies used in markets.5 Finally, the behavior of the market de-
pends on the distribution of wealth across strategies. This is driven both by the active
selection of forecast rules by agents, as well as by the passive movement of wealth to-
ward successful strategies.6

The importance of heterogeneous gain levels in financial markets was shown in early
computational models such as LeBaron, Arthur & Palmer (1999). In that paper, conver-
gence of the market to a rational expectations equilibrium depended critically on how fast
agents were updating their forecasting models. Frequent updates, which forced agents to
use relatively short time series for decision making, led to a rich pattern in prices and vol-
ume, far from any recognizable equilibrium. However, restricting updates to occur rela-
tively infrequently, and forcing agents to use long time series to evaluate rules, caused the
market to converge to a well defined homogeneous rational expectations equilibrium.7

The macro economic environment used here will be simple, and easily recognizable.
It is a form of “Lucas tree” model of asset prices as in Lucas (1978). A single asset pays a

4 A complete treatment on this topic is contained in Evans & Honkapohja (2001). An exploration of many forms of heterogeneity
in adaptive learning models, including gain parameters, is in Honkapohja & Mitra (2006).

5The model shares much basic intuition in this area with the early work in Brock & Hommes (1998), Day & Huang (1990), Frankel
& Froot (1988), Kirman (1991), and Lux (1998). Recent surveys to this literature can be found in Chiarella, Dieci & He (2009) and
Hommes & Wagener (2009), and Tesfatsion & Judd (2006).

6This overlaps with the large literature on growth optimal portfolio strategies which can be traced back to Kelley (1956), and a
more recent treatment can be found in Blume & Easley (1990). A recent survey on this is Evstigneev, Hens & Schenk-Hoppe (2009).

7 Similar results, but in very different models can be found in Levy, Levy & Solomon (1994), LeBaron (2006), and in Thurner,
Dockner & Gaunersdorfer (2002). This paper directly considers the destabilizing impact of large gain, or “short memory” traders on
market dynamics. Similar questions about how much data agents should be using from the past are considered in Mitra (2005). A
recent model stressing what might happen when agents overweight shorter run trends, ignoring longer length reversals, is Fuster,
Laison & Mendel (2010). Hommes (2010) surveys the growing experimental literature which often shows people following short term
trends when reporting their expectations in controlled laboratory settings. Finally, Dacorogna, Gencay, Muller, Olsen & Pictet (2001)
presents a philosophy, and some time series models, for markets populated by agents with many different time perspectives.
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stochastic dividend calibrated to the trend and volatility of U.S. real dividend series. This
model is too simple to fit all the facts and puzzles from the macro finance world. However,
it seems to be in a good middle ground, allowing for some quantitative comparisons
of the learning model to actual time series, but not getting so complex as to hide basic
features which are central to the learning dynamics. For example, macro level shocks
should always be viewed as extremely costly in terms of using up modeling degrees of
freedom. This model is restricted to only one aggregate shock coming from the movement
in aggregate dividends. This restriction is critical, and makes it easier to interpret how
much of the price volatility from the model can be interpreted as an endogenous feature
of learning, as opposed to coming from other poorly specific macro level shocks.8

A final interesting aspect to learning in this model is the explicit consideration of risk
and return. This was used in LeBaron et al. (1999). More recently several authors have
begun exploring this issue as in Branch & Evans (2011 forthcoming). This allows sepa-
ration of the dynamics into return and volatility forecasts. The functional style of return
forecasts is allowed to vary across forecast families, but the volatility forecasts all follow
a common form. Large returns are interpreted as increases in risk by most agents. This
distinction seems plausible, and is critical in how the market is able to generate price
fundamental deviations.

Section 2 gives a short explanation of the basic model. Section 3.1 examines some
benchmark simulation runs, and observes the output of the model as compared to actual
financial times series. This section cannot report all the results from the model, since this
would distract the paper from its main mission of exploring mostly long range swings in
prices from their fundamentals. Sections 3.2 and 3.3 look at many internal mechanism of
the agents and forecasts in use, and how wealth moves across these over time. Learning
algorithms appear to be behaving in a predictable fashion, and interesting dynamics come
from how agent wealth selects rules over time. The final section concludes and introduces
some questions for researchers working on learning in financial markets.

2 Model description

This section will briefly describe the structure of the model. It combines components from
many parts of the learning literature. The goal is to build a heterogeneous agent asset
market which is as parsimonious as possible, but can still do a good job of replicating

8The model requires a variety of independent micro shocks, but these should be viewed as much more plausible, and less costly,
than adding further aggregate shocks.
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financial market features. Also, its inner workings should be simple enough for detailed
analysis, meet a general plausibility test, and yet be rich enough to understand several
aspects of how wealth moves around in a learning investment environment.

2.1 Assets

The market consists of only two assets. First, there is a risky asset paying a stochastic
dividend,

dt+1 = dg + dt + εt, (1)

where dt is the log of the dividend paid at time t. Time will be incremented in units of
weeks. Lower case variables will represent logs of the corresponding variables, so the
actual dividend is given by,

Dt = edt . (2)

The shocks to dividends are given by εt which is independent over time, and follows
a Gaussian distribution with zero mean, and variance, σ2

d , that will be calibrated to ac-
tual long run dividends from the U.S. The dividend growth rate would then be given by
eg+(1/2)σ2

d which is approximately Dg = dg + (1/2)σ2
d .

The return on the stock with dividend at date t is given by

Rt =
Pt + Dt − Pt−1

Pt−1
, (3)

where Pt is the price of the stock at time t. Timing in the market is critical. Dividends are
paid at the beginning of time period t. Both Pt and Dt are part of the information set used
in forecasting future returns, Rt+1. There are I individual agents in the model indexed by
i. The total supply of shares is fixed, and set to unity,

I

∑
i=1

St,i = 1. (4)

There is also a risk free asset that is available in infinite supply, with agent i holding
Bt,i units at time t. The risk free asset pays a rate of R f which will be assumed to be zero.
This is done for two important reasons. It limits the injection of outside resources to the
dividend process only. Also, it allows for an interpretation of this as a model with a per-
fectly storable consumption good along with the risky asset. The standard intertemporal
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budget constraint holds for each agent i,

Wt,i = PtSt,i + Bt,i + Ct,i = (Pt + Dt)St−1,i + (1 + R f )Bt−1,i, (5)

where Wt,i represents the wealth at time t for agent i.

2.2 Preferences

Portfolio choices in the model are determined by a simple myopic power utility function
in future wealth. The agent’s portfolio problem corresponds to,

maxαt,i

Ei
tW

1−γ
t+1,i

1−γ , (6)

st. Wt+1,i = (1 + Rp
t+1,i)(Wt,i − Ct,i), (7)

Rp
t+1,i = αt,iRt+1 + (1 − αt,i)R f . (8)

αt,i represents agent i’s fraction of savings (W − C) in the risky asset. It is well known
that the solution to this problem yields an optimal portfolio weight given by,

αt,i =
Ei

t(rt+1)− r f +
1
2 σ2

t,i

γσ2
t,i

+ εt,i, (9)

with rt = log(1 + Rt), r f = log(1 + R f ), σ2
t,i is agent i’s estimate of the conditional vari-

ance at time t, and εt,i is an individual shock designed to make sure that there is some
small amount of heterogeneity to keep trade operating.9 It is distributed normally with
variance, σ2

ε .
In the current version of the model neither leverage nor short sales are allowed. The

fractional demand is restricted to αt,i to αL ≤ αt,i ≤ αH. The addition of both these features
is important, but adds significant model complexity. One key problem is that with either
one of these, one must address problems of agent bankruptcy, and borrowing constraints.
Both of these are not trivial, and involve many possible implementation details.

Consumption will be assumed to be a constant fraction of wealth, λ. This is identical
over agents, and constant over time. The intertemporal budget constraint is therefore
given by

Wt+1,i = (1 + Rp
t+1)(1 − λ)Wt,i. (10)

9The derivation of this follows Campbell & Viceira (2002). It involves taking a Taylor series approximation for the log portfolio
return.
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This also gives the current period budget constraint,

PtSt,i + Bt,i = (1 − λ)((Pt + Dt)St−1,i + (1 + R f )Bt−1,i). (11)

This simplified portfolio strategy will be used throughout the paper. It is important
to note that the fixed consumption/wealth, myopic strategy approach given here would
be optimal in a standard intertemporal model for consumption portfolio choice subject
to two key assumptions. First, the intertemporal elasticity of substitution would have to
be unity to fix the consumption wealth ratio, and second, the correlation between unex-
pected returns and certain state variables would have to be zero to eliminate the demand
for intertemporal hedging.10

2.3 Expected Return Forecasts

The basic problem faced by agents is to forecast both expected returns and the conditional
variance one period into the future. This section will describe the forecasting tools used
for expected returns. A forecast strategy, indexed by j, is a method for generating an
expected return forecast Ej(rt+1). Agents, indexed by i, will choose forecast rules, indexed
by j, according to an expected utility objectives.

All the forecasts will use long range forecasts of expected values using constant gain
learning algorithms equipped with the minimum gain level, denoted gL.

r̄t = (1 − gL)r̄t−1 + gLrt (12)

p̄dt = (1 − gL) p̄dt−1 + gL pdt−1 (13)

σ̄2
t = (1 − gL)σ̄

2
t−1 + gL(rt − r̄t)

2 (14)

σ̄2
pd,t = (1 − gL)σ̄

2
pd,t−1 + gL(pdt − p̄dt)

2 (15)

The forecasts used will combine four linear forecasts drawn from well known forecast
families. The first of these is a form of adaptive expectations which corresponds to,

f j
t = f j

t−1 + gj(rt − f j
t−1). (16)

Forecasts of expected returns are dynamically adjusted based on the latest forecast error.
This forecast format is simple and generic. It has roots connected to adaptive expectations,

10See Campbell & Viceira (1999) for the basic framework. Also, see Giovannini & Weil (1989) for early work on determining con-
ditions for myopic portfolio decisions. Hedging demands would only impose a constant shift on the optimal portfolio, so it is an
interesting question how much of an impact this might have on the results.
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trend following technical trading, and also Kalman filtering.11 The critical parameter is
the gain level represented by gj. This determines the weight that agents put on recent
returns and how this impacts their expectations of the future. Forecasts with a large range
of gain parameters will compete against each other in the market. Finally, this forecast
will the trimmed in that it is restricted to stay between the values of [−hj, hj]. These will
be set to relatively large values, and are randomly distributed across rules.

The second forecasting rule is based on a classic fundamental strategy. This forecast
uses log price dividend ratio regressions as a basis for forecasting future returns,

f j
t = r̄t + β

j
t(pdt − p̄dt). (17)

where pdt is log(Pt/Dt). Although agents are only interested in the one period ahead
forecasts the P/D regressions will be estimated using the mean return over the next MPD

periods, where MPD = 52 weeks.
The third forecast rule will be based on simple linear regressions. It is a predictor of

returns at time t given by

f j
t = r̄t +

MAR−1

∑
i=0

β
j
t,i(rt−i − r̄t) (18)

This strategy works to eliminate short range autocorrelations in returns series through its
behavior, and MAR = 3 for all runs in this paper. It will be referred to as the Short AR
forecast.12

The previous two rules will be estimated each period using recursive least squares.
There are many examples of this for financial market learning.13 The key difference is
that this model will stress heterogeneity in the learning algorithms with wealth shifting
across many different rules, each using a different gain parameter in its online updating.14

The final rule is a buy and hold strategy using the long run mean, r̄t, for the expected
return, and the long run variance, σ̄2

t , as the variance estimate. This portfolio fraction
is then determined by the demand equation used by the other forecasting rules. This
gives a useful passive benchmark strategy which can be monitored for relative wealth

11See Cagan (1956), Friedman (1956), Muth (1960), and Phelps (1967) for original applications. A nice summary of the connections
between Kalman filtering, adaptive expectations, and recursive least squares is given in Sargent (1999). A recent paper demonstrating
a more general connection to state space models and expected returns is Pastor & Stambaugh (2009). Empirically, Frankel & Froot
(1987) and Taylor & Allen (1992) provide evidence that at least some forecasters do use these rules. Finally, Hommes (2010) surveys
some of the laboratory evidence that experimental subjects also use extrapolative methods for forecasting time series.

12These simple forecasting agents who use only recent returns in their models, fighting against return correlations, share some
features with the momentum traders of Hong & Stein (1999).

13 See Evans & Honkapohja (2001) for many examples, and also very extensive descriptions of recursive least squares learning
methods.

14Another recent model stressing heterogeneity in an OLS learning environment is Georges (2008) in which OLS learning rules are
updated asynchronously.
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accumulation in comparison with the other active strategies.

2.4 Regression Updates

Forecasting rules are continually updated. The adaptive forecast only involves fixed fore-
cast parameters, so its updates are trivial, requiring only the recent return. The two re-
gression forecasts are updated each period using recursive least squares.

All the rules assume a constant gain parameter, but each rule in the family corresponds
to a different gain level. This again corresponds to varying weights for the forecasts look-
ing at past data. The fundamental regression is run using the long range return,

r̃t =
1

MPD

MPD

∑
j=1

rt−j+1 (19)

The fundamental regression is updated according to,

β
j
t+1 = β

j
t +

gj

σ̄2
pd,t

(pdt−MPD − p̄dt−MPD
)ut,j (20)

ut,j = (r̃t − f j,t−MPD)

Also, β
j
t is restricted to be between 0 and −0.05. The zero upper bound on β makes sure

this strategy is mean reverting, with an overall stabilizing impact on the market.
For the lagged return regression this would be,

β
j
t+1,i = β

j
t,i +

gj

σ̄2
r,t
(rt−i − r̄t−i)ut,j, (21)

ut,j = (rt − f j
t )

where gj is again the critical gain parameter, and it varies across forecast rules.15 In both
forecast regressions the forecast error, ut,j, is trimmed. If ut,j > hj it is set to hj, and if
ut,j < −hj it is set to −hj. This dampens the impact of large price moves on the forecast
estimation process.

15This format for multivariate updating is only an approximation to the true recursive estimation procedure. It is assuming that the
variance/covariance matrix of returns is diagonal. Generated returns in the model are close to uncorrelated, so this approximation
is probably reasonable. This is done to avoid performing many costly matrix inversions. Also, the standard recursive least squares
is simplified by using the long run estimates for the mean in both regressions. Only the linear coefficient is estimated with a het-
erogeneous learning model. This is done to simplify the learning model, and concentrate heterogeneity on the linear parameters,
β

j
t.
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2.5 Variance Forecasts

The optimal portfolio choice demands a forecast of the conditional variance as well as the
conditional mean.16 The variance forecasts will be generated from adaptive expectations
as in,

σ̂2
t+1,j = σ̂2

t,j + gj,σ(e2
t,j − σ̂2

t,j) (22)

e2
t,j = (rt − f j

t−1)
2, (23)

where e2
t,j is the squared forecast error at time t, for rule j. The above conditional variance

estimate is used for all the rules. There is no attempt to develop a wide range of variance
forecasting rules, reflecting the fact that while there may be many ways to estimate a con-
ditional variance, they often produce similar results.17 This forecast method has many
useful characteristics as a benchmark forecast. First, it is essentially an adaptive expecta-
tions forecast on second moments, and therefore shares a functional form similar to that
for the adaptive expectations family of return forecasts. Second, it is closely related to
other familiar conditional variance estimates.18 Finally, the gain level for the variance in
a forecast rule, gj,σ, is allowed to be different from that used in the mean expectations, gj.
This allows for rules to have a different time series perspective on returns and volatility.

Finally, agents do not update their estimates of the variance each period. They do
this stochastically by updating their variance estimate each period with probability 0.25.
This is done for several reasons. First it introduces more heterogeneity into the variance
estimation part of the model since its construction yields a lot of similarity in variance
forecasts. Also, if variance updating occurred simultaneous to return forecasts, the mar-
ket would be unstable. Spirals of ever falling prices, and increasing variance estimates
would be impossible to avoid in this case.

2.6 Market Clearing

The market is cleared by setting the individual share demands equal to the aggregate
share supply of unity,

1 =
I

∑
i=1

Zt,i(Pt). (24)

16 Several other papers have explored the dynamics of risk and return forecasting. This includes Branch & Evans (2011 forthcoming)
and Gaunersdorfer (2000). In LeBaron (2001a) risk is implicitly considered through the utility function and portfolio returns. Obvi-
ously, methods that parameterize risk in the variance may miss other components of the return distribution that agents care about,
but the gain in tractability is important.

17See Nelson (1992) for early work on this topic.
18 See Bollerslev, Engle & Nelson (1995) or Andersen, Bollerslev, Christoffersen & Diebold (2006) for surveys of the large literature

on volatility modeling.
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Writing the demand for shares as its fraction of current wealth, remembering that αt,i is a
function of the current price gives

PtZt,i = (1 − λ)αt,i(Pt)Wt,i, (25)

Zt,i(Pt) = (1 − λ)αt,i(Pt)
(Pt + Dt)St−1,i + Bt−1,i

Pt
. (26)

This market is cleared for the current price level Pt. This needs to be done numeri-
cally given the complexities of the various demand functions and forecasts, and also the
boundary conditions on αt,i.19 It is important to note again, that forecasts are conditional
on the price at time t, so the market clearing involves finding a price which clears the mar-
ket for all agent demands, allowing these demands to be conditioned on their forecasts of
Rt+1 given the current price and dividend. 20

2.7 Gain Levels

An important design question for the simulation is how to set the range of gain levels for
the various forecast rules. These will determine the dynamics of forecasts. Given that this
is an entire distribution of values it will be impossible to accomplish much in terms of
sensitivity analysis on this. Therefore, a reasonable mechanism will be used to generate
these, and this will be used in all the simulations.

Gain levels will be thought of using their half-life equivalents, since the gain numbers
themselves do not offer much in the way of economic or forecasting intuition. For this
think of the simple exponential forecast mechanism with

f j
t+1 = (1 − gj) f j

t + gjet+1. (27)

This easily maps to the simple exponential forecast rule,

ft =
∞

∑
k=1

(1 − gj)
ket−k. (28)

The half-life of this forecast corresponds to the number of periods, mh, which drops the
weight to 1/2,

1
2
= (1 − gj)

mh , (29)

19A binary search is used to find the market clearing price using starting information from Pt−1.
20 The current price determines Rt which is an input into both the adaptive, and short AR forecasts. Also, the price level Pt enters

into the Pt/Dt ratio which is required for the fundamental forecasts. All forecasts are updated with this time t information in the
market clearing process.

10



or
gj = 1 − 2−1/mh . (30)

The distribution of mh then is the key object of choice here. It is chosen so that log2(mh)

is distributed uniformly between a given minimum and maximum value. The gain levels
are further simplified to use only 5 discrete values. These are given in table 1, and are
[1, 2.5, 7, 18, 50] years respectively. In the long memory (low gain) experiments these five
values will be distributed between 45 and 50 years.

These distributions are used for all forecasting rules. All forecast rules need a gain
both for the expected return forecast, and the variance forecast. These will be chosen
independently from each other. This allows for agents to have differing perspectives on
the importance of past data for the expected return and variance processes.

2.8 Adaptive rule selection

The design of the models used here allows for both passive and active learning. Passive
learning corresponds to the long term evolution of wealth across strategies. Beyond pas-
sive learning, the model allows for active learning, or adaptive rule selection. This mech-
anism addresses the fact that agents will seek out strategies which best optimize their
estimated objective functions. In this sense it is a form of adaptive utility maximization.

Implementing such a learning process opens a large number of design questions. This
paper will stay with a relatively simple implementation. The first question is how to deal
with estimating expected utility. Expected utility will be estimated using an exponentially
weighted average over the recent past,

Ût,j = Ût−1,j + gi
u(Ut,j − Ût−1,j), (31)

where Ut,j is the realized utility for rule j received at time t. This corresponds to,

Ut,j =
1

1 − γ
(1 + Rp

t,j)
(1−γ) (32)

with Rp
t,j the portfolio holdings of rule j at time t. Each rule reports this value for the 5

discrete agent gain parameters, gi
u. Agents choose rules optimally using the objective that

corresponds to their specific perspective on the past, gi
u, which is a fixed characteristic.

The gain parameter gi
u follows the same discrete distribution as that for the expected

return and variance forecasts.
The final component to the learning dynamic is how the agents make the decision to
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change rules. The mechanism is simple, but designed to capture a kind of heterogeneous
updating that seems plausible. Each period a certain fraction, L, of agents is chosen at
random. Each one randomly chooses a new rule out of the set of all rules. If this rule
exceeds the current one in terms of estimated expected utility, then the agent switches
forecasting rules.

3 Results

3.1 Benchmarks

This section presents results from two sets of benchmark parameters for the model. The
first restricts gain parameters to low values corresponding to long learning horizons. It
will be referred to as the “low gain” experiment. This is an important test to see if the
model is capable of converging to a reasonable steady state, and whether the learning
dynamics will function as long as all gain levels are set low enough, and agents are using
data over long ranges in the forecasts. The half-life ranges for gain parameters in these
experiments are set to 45 − 50 years. Also, for this run only the coefficient of relative risk
aversion is raised from 3.5 to 8. This is necessary since the model converges to a very
low return variance. This would drive all portfolio holdings to their extreme, αH, in this
situation which makes the market difficult to clear. The model is run for 200, 000 weeks
to make sure it has reached some form of long run steady state, and all early transients
have been eliminated. Figure 1 displays the price/dividend ratio, returns, and trading
volume from the last 100 years of simulated data. Prices do not move far from dividends
as shown in the top panel. Returns appear to be regular, and they can be shown to be
uncorrelated, and close to Gaussian. Trading volume is nearly constant, reflecting the
small amount of noise added to each agent’s portfolio demand.

This simulated set of prices and returns generates an important, but relatively uninter-
esting set of results from the market simulation. While these features are not close to those
of actual markets they do demonstrate that for a certain set of parameters this market and
the agents’ learning algorithms are capable of converging to a reasonable approximation
to a rational expectations equilibrium. The most important aspect of this set of param-
eters is the fact that agents use learning algorithms which force them to concentrate on
long range averages as opposed to short run trends. Also, though the aggregate data
looks like an equilibrium, it is not quite an equilibrium in the traditional sense. There is
still trading, and shifts in strategies which do not appear in the aggregate time series.
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Figure 2 displays results from a run that will be used extensively to demonstrate the
features of heterogeneous gain learning in this model. In this case, the 5 gain levels used
vary from 1 year to 50 years as shown in table 1. This will often be referred to as the “all
gain” experiment. The three panels of figure 2 should be compared with the previous
figure. Now the price/dividend ratio varies erratically through time, which is important
to generating reasonable long swings in asset prices. The weekly returns demonstrate
two features common to relatively high frequency returns. First, there are a large number
of extreme returns, and second, periods of high volatility appear clumped together. These
last two facts are interesting, and are important to the dynamics that this model generates.
However, they are secondary to the main mission of this paper which is concerned with
the top panel, and long swings from fundamentals. Another interesting result is shown
in the lowest panel which presents the trading volume time series. Volume clearly moves
with changes in P/D level and return volatility. As with most real financial series volume
appears largest when return volatility is high. It also appears to be lowest at the top of a
P/D bubble, sharply increasing as the price falls.21

The large swings in the price/dividend ratio are compared to the values from the ac-
tual series in figure 3. The persistent, but erratic swings in the actual P/D ratio are clear.22

This is not an easy series to characterize, and it is possible that visual analysis may be the
best that can be done. It would appear that there are fluctuations that occur at frequencies
which are large relative to the length of the series, and one could also question the sta-
tionarity of this series as well. The long gain half-life is set to 50 years in recognition that
this length of data (140 years) is probably the best that many investors can do in assessing
the long range dynamics for stock returns. The panels below the actual data represent 3
random snapshots from runs of the simulations using the long and short gain levels. They
draw 140 year periods from a simulated time series of 4, 000 years, so there is little chance
for overlap. These visually show similar patterns to the actual data with varying levels
of persistence and variability. It is interesting to note that all series are capable of long
periods of near constant ratios. Eyeball tests of time series should always be viewed with
suspicion, but in this case the special nature of the target series, and the sorts of dynamics
we are interested in makes these tests essential.23

21Hong & Sraer (2010) describe different types of bubbles based on volume/price dynamics. In their framework this would be
described as a “quiet” bubble. How well this lines up with historical bubbles is an interesting question for the future. It should be
noted that these volume comovements are very common in the laboratory as in Smith, Suchanek & Williams (1988). Further evidence
on the dynamics of volume and prices for this market structure is presented in LeBaron (2010).

22 The S&P series used here is the Shiller annual series available from http://www.econ.yale.edu/ shiller/. This series contains
both dividend and earnings information. The rough visual features of this series would be similar if the price/dividend ratio were
replaced with the annual price/earnings ratio.

23The skeptic could argue that the original series is simply too nonstationary to deal with. However, even this statement makes a
big point about learning and long range financial data. What should investors do in that case?
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Table 2 presents summary statistics on annual data comparing the all gain level simula-
tions with the annual Shiller data. Simulation results are taken from the final 1, 000 years
in the 4, 000 year all gain run. Comparisons are made to both the P/D ratios and the P/E
ratio since the model could be viewed as generating either of these. The table shows that
the simulated data generates reasonable levels and variability in the first two rows. It is a
little low relative to the mean P/D ratio, but it should be realized that much of that large
mean, 26, is driven by observations of the late 1990’s or early 2000’s. The model does
generate a slightly lower level of variability with a standard deviation of only 4.24 which
is smaller than the two ratio comparison series. There is some evidence of this smoother
dynamics in figure 3, but it should be stressed that all of these moments from the data are
estimated with very low precision.

Table 2 also reports the annual real return and standard deviation for the simulation
and the actual data along with the Sharpe ratio. These are comparable, but the simulation
generates a slightly higher level of return variability with an annual standard deviation
of 0.25 as compared to the historical value of 0.17. This is common for many simulation
runs. Two issues should be kept in mind when comparing these values. First, the data
moments are again not estimated with great precision, and 0.25 would fall within a rea-
sonable range of 0.17. More importantly, the simulation is concerned with generating the
dynamics of a single representative asset. Given this, it is not clear if the variability of its
return output should be judged in comparison to the index, or to the much higher level
of volatility displayed by individual stocks. Table 2 shows that the simulations are in a
reasonable range when compared with long range data.

The most demanding and controversial aspect of long range deviations from funda-
mentals is that it generates some observed predictability in long range returns. This is
explored in table 3 which implements standard long horizon forecasting regressions of 1
year and 5 years on the current logged P/D ratio. This is done both for the all gain sim-
ulation, and the low gain only benchmark which was displayed in figure 1. In all cases
the dependent variable is the log return at either the 1 or 5 year horizon. These returns
are regressed on both the log(P/D) ratio and also the log(C/D) ratio. This later ratio
is an important consumption ratio for this model since consumption can only be funded
through dividend flows. When this ratio is less (greater) than 1 agents are increasing
(decreasing) their savings through changes to their asset positions. Row one shows that
the regression is capable of forecasting future returns with a highly significant coefficient,
and a R2 of nearly 0.19. Relative to actual data this is large, but it should be remembered

14



that this regression is run on a sample length of 1,000 years.24 The second row adds the
consumption ratio which is highly significant, but does not add significantly to the R2.
The third row reports the regression for the 5 year horizon. The coefficient is still highly
significant, but the R2 falls to 0.14.

The lower panel of table 3 reports the results for the small gain (long half-life) only
rules. The results for these simulations were displayed as the important initial benchmark
in figure 1. In all cases the predictability is near zero. All of the regression coefficients are
insignificant with near zero R2. This model again displays features which are consistent
with an efficient market driven by well functioning simple learning algorithms. They
have achieved their mission of driving predictability from the market.

The next two figures deal with shorter horizon phenomenon generated in the all gain
simulations which have important implications for the longer horizon returns. Figure
4 compares the distribution of weekly returns for both the CRSP value weighted index
from 1926-2009, and the all gain simulation shown in figure 2. These are drawn from the
final 50, 000 weeks of a 200, 000 week simulation. Both distributions show that they are
not Gaussian, and are leptokurtic, possessing “fat tail” features. This result is well known
for high frequency asset returns in most markets. While this is not a long range feature,
the high frequency of extreme moves in these distributions does impact the learning dy-
namics of the various strategies.

Figure 5 summarizes two key time series features of the generated returns, and com-
pares these with the CRSP benchmark. The top panel reports return autocorrelations for
the CRSP index, and the same sample of 50,000 weeks used in the previous figure. Both
series show very little evidence for any amount of correlation in returns. The lower panel
displays the weekly autocorrelation for absolute returns for the same data. The simula-
tion generates very strong positive autocorrelations as do the actual returns. However,
the correlation pattern is a little high at smaller lags, and drops to zero by the lag at 100
weeks.25 Though this feature is short range in nature, its long correlation pattern demon-
strates that it may be important for long range patterns in financial data. Further evidence
in support of this will be presented in the next section.

24 It would be interesting to see how well this works on sample sizes comparable to the real data series. In these series the issue of the
usefulness of predictability is still an open question. See Goyal & Welch (2003) for some of the debate on out of sample predictability,
and Fisher & Statman (2006) for some skeptical views on the usefulness of trading rules based on P/D ratios.

25 Modeling the dynamics of volatility at longer horizons is far from settled in finance. For these figures one would see dramatic
instability in the autocorrelation pattern depending on whether the Great Depression was added to the series or not. Also, several
authors have proposed formal fractionally integrated models such as the FIGARCH, Baillie, Bollerslev & Mikkelsen (1996). Models
which suggest multiple (but finite) numbers of horizons have also been suggested in LeBaron (2001b) and Corsi (2009). Some authors
have also proposed using splines to fit these low frequency components as in Engle & Rangel (2008). Given what we know, one could
say that the model and the data both generate a form of long range persistence similar to that observed in the fundamental ratios.
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3.2 Wealth Distributions

The previous section demonstrated that the benchmark simulation model with forecast
rules and agents using small and large gain level learning algorithms can generate rea-
sonably calibrated time series. These series are not perfect, but still generate features that
are hard to replicate in many traditional theoretical frameworks. Generation of these fea-
tures is interesting, but is only a small part of model construction. Do these models give
any insights into what is driving these results? Can one look into their inner workings to
better understand the features from the actual data? This section will explore this issue in
terms of the initial question about long swings of prices from fundamentals using the all
gain simulation as a test bed for this.

Beyond prices and returns, the model provides a rich set of information about the
dynamics of the forecasting rules, the learning algorithms, and wealth distributions. How
wealth endogenously falls across forecasting strategies is the key state variable in the
model. This determines the dynamics of prices and trading volume as the market moves,
but it is important to remember that these wealth distributions are moving targets as they
change through time as well. Figure 6 presents the time series of wealth fractions for the
4 forecast families over the entire 200, 000 week (∼ 4, 000 year) period. These will vary
across runs, but this picture is generally representative of many other simulations. There
are many important features in the figure. First, the wealth fractions do vary over time.
There is no tendency to settle down to relatively constant wealth fractions. The fractions
appear to take swings that can both be short and long lived. Similar to our initial figures
on long swings in P/D ratios this figure shows swings in wealth ratios that can last for
almost 100 year periods.

While the time series are not completely smooth, they do appear to converge to a rela-
tively stable ranking. The simple buy and hold strategy, which invests a constant fraction
in stock based on the long range forecast for the expected return and variance, controls
roughly 50 percent of wealth in the market over the entire range. This might be surprising
in that this passive strategy cannot contribute to dramatic fluctuations in prices, but it is
important to remember that in a heterogeneous world, this type may not be the marginal
investor, critical for pricing.26 Also, it is interesting that any model generating reasonable
financial time series should also generate evidence which is at least roughly consistent
with efficient markets at some horizons, and therefore the objective functions of many
investors will find the passive strategies optimal. Basically, the gains to dynamic trading
strategies do not dramatically dominate the passive strategies, and in a noisy decision

26See Adam & Marcet (2010b) for some recent theoretical results on heterogeneous agents and pricing.
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making world some investors will go with each of these.
The next two strategies by wealth in figure 6 are the adaptive, trend following family,

and the fundamental family. The battle between these strategies is critical to the over-
all stability of the market. Through the simulation the adaptive types control nearly 30
percent of wealth as compared with 15 percent for the fundamental types. This larger
share of wealth in what are essentially destabilizing strategies is important to the behav-
ior of the market at both long and short horizons, and some examples will be given in
later figures.27 Finally, the short AR traders, who use a short range regression to forecast
returns, remain a small part of the market at about 5 percent of wealth. This strategy
follows a classic efficient market dynamic. Its presence drives short range return corre-
lations to zero while putting itself nearly out of business. It always stays in the fringe,
soaking up some short term predictability, and ready to take action anytime large short
term correlations appear, but it never takes a large share of wealth.28

The strategy families are only one broad distinction over the forecast rules. Each strat-
egy in a family is also characterized by its forecast gain parameter, and its variance fore-
cast gain parameter. As mentioned previously, these are critical in determining how the
agents weigh past data in their forecasts. It has already been shown that limiting these
two parameters to small values across all forecast rules leads to convergence of the market
into a rough approximation of a rational expectations equilibrium. With lots of gain levels
active, more realistic price and return series are generated. Figure 7 shows the distribu-
tion of wealth across the 5 discrete gain levels. These are the same half-lives as shown
in table 1 and would correspond (left to right in the figure) to [50, 18, 7, 2.5, 1] years. For
both the adaptive and fundamental strategies, wealth is not converging to any particular
gain level, and, most importantly, there is no strong tendency for wealth to move to the
smallest possible gain (largest half-life) strategy. The situation is different for the short AR
strategy which shows wealth moving to the smaller gain strategies. In this case, almost
75 percent of wealth is using forecasting models with gain half-lives of 18 or 50 years
which seems comfortably long for estimating weekly regression models. The buy and
hold strategies only use long half-life forecasts in their rules, so their distributions are not
presented.29

Figure 8 reports the results for the variance forecast gain levels. In this case the figure
27The basic fact that the fundamental strategies may not control enough wealth to mitigate extreme moves in asset prices is related

to “limits to arbitrage” ideas as in Shleifer & Vishny (1997).
28 Simulation experiments without this strategy show that its role is critical. Removing it generates time series with short range

autocorrelations much larger than actual financial series.
29These histograms are generated as a single period snapshot at the end of the 200,000 week run. They should be viewed with some

caution since sampling variability over time could be important. Specific patterns may not be as strong as they appear, but the basic
idea that for two of the forecasts, many gain levels remain active in the market is generally robust.
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shows a more distinct pattern with a large amount of wealth concentrated on the large
gain (low half-life) forecasts. The rules still leave a moderate amount of wealth at longer
horizons, but in each case there is a distinct concentration of wealth in rules which utilize
a small amount of data in their volatility forecasts.

In the model a key gain parameter is concerned with how agents assess the value of
the different available strategies. This was described in equation, 31. Figure 9 reports the
distribution of wealth across utility gain levels gi

u. The gain level is considered a fixed
component of all agents beliefs about the world. This plot shows whether there is any
tendency for any type, particularly those using longer horizons of data, to dominate the
market. This does not appear to be the case, and all types survive. There is some weak
evidence for some of the lower gain, longer half-life, strategies to do better, but it appears
to be very weak.

Wealth distributions show a few broad features across the model. Buy and hold strate-
gies dominate, but adaptive strategies continue to hold a large amount of wealth as well.
Fundamental strategies reveal a significantly smaller fraction of the market relative to
these other two strategies which is important in market dynamics. In terms of gain levels,
in most cases there is no strong selection for low gain learning models which would use
large amounts of data. This is important since it is this restriction that allows the learning
models to converge as shown in the first benchmark simulation. The next section will
explore some of the long range dynamics given this population of agents and rules.

3.3 Mechanisms

Since the model gives full access to the strategies, it is insightful to look inside and see
exactly what they are doing. The next few figures produce some snapshots of prices
and forecasts which show the general pattern of forecast behavior as it responds to price
movements. Figure 10 displays the dynamics of the wealth weighted expected returns
across all four forecast families along with the price level. This is done over a 3000 week
(or roughly 60 year) snapshot of data. The second panel shows the forecast for the two
most important strategies, adaptive and fundamental. These move as they should, and
they are dominated by their large moves near big price drops. The adaptive forecasts ob-
serve the down trend in the market, and make low return forecasts while the fundamental
forecasts see the price as being low relative to the fundamentals, and respond with a high
conditional return forecast. Qualitatively, this is as it should be for these strategies.

The lower panel reports the results for the buy and hold strategy, and the short AR
strategy. The buy and hold is basically a constant, corresponding to its long horizon mean.
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The short AR strategy generates a lot of variability around this value with high volatility,
and large swings. Since this strategy is driven purely as an autoregressive model on
lagged returns it is sensible that the forecast itself picks up much of the return variability.
This intense variability in the strategy may be related to its rather poor performance.

Figure 11 presents the same time series snapshot, but now replaces the expected return
forecast with the actual portfolio strategy for each family as represented by the equity
fraction. This involves combining the expected return forecast along with the variance
forecast. This figure shows some more interesting dynamics than the last one. The top
panel shows the price levels, and the middle and lower panels are the different forecast
family strategies. First, the adaptive forecasts do behave as expected in following general
price trends. They appear to be readjusting portfolio weights very quickly in response to
small price trends, and they also back off their positions substantially after large price de-
clines. The behavior of the fundamental strategy is more interesting. During large price
increases it actually starts increasing its holding of stock. This is curious since it doesn’t
make sense for this strategy as the price is moving farther out of line with dividends. We
will see that there are two mechanisms at work here. First, during major price run ups
volatility falls, so their estimated risk levels are falling, pushing them to a more aggressive
portfolio regardless of their conditional return forecasts. Also, these forecasts are depen-
dent on estimates of their P/D regressions. As a price rise continues, evidence in support
of reversion to the fundamental diminishes in strength. In other words, they begin to lose
faith in their fundamental models, and this would sweep across their populations from
small to large half-lives. It is also true that their response to a large price drop seems sur-
prisingly weak. This is also a reminder that their behavior is impacted by the conditional
variance. While their expected returns are high after a fall, these large returns are feeding
into their variance models, and they believe that risk is high in these states of the world.
They are nervous and may not take as aggressive a position as their conditional return
models suggest.

The features of the fundamental trading strategies become clearer when they are ana-
lyzed over the extreme gain levels as in figure 12. The middle panel in this figure looks
at the fundamental strategies for the highest and lowest gain level in the volatility com-
ponent only. If the low gain strategies are relatively long term in their assessment of risk,
they should respond to a fall in price more aggressively than the short gain volatility
strategies. This is very dramatic in the figure. Low gain strategies come into the market
immediately on a price fall, and max out their portfolio while the high gain strategies
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do not behave as aggressively.30 The bottom panel presents the estimates of their least
squares coefficient from the return regressions on the value for log(P/D). For the low
gain strategies this is stable and negative.31 The high gain forecasts show a pattern which
moves through time in a predictable fashion. It maxes out at 0, which is its maximum
allowable value, during significant price run ups. The short range of data that this regres-
sion is relying on shows no strong return to fundamentals, and the regression coefficient
simply reflects this belief. After a large price drop, the parameter swings negative, again
reflecting that the recent data points now strongly support the fact that large negative
returns often follow periods when prices are large relative to fundamentals. If these re-
sults seem somewhat extreme, it is important to remember that these are the extreme gain
levels. There are 3 others which lie in between these. The aggregate forecast depends on
how wealth falls across these different strategies as given in figure 7.

The next figures try to explore the mechanism behind the large swings in fundamentals
in the model. Specifically, they explore the hypothesis of whether the swings are driven
by the common component in agents’ forecast models, their prediction of the conditional
variance. Figure 13 is a simple plot of the log(P/D) ratio versus the log of the wealth
weighted variance forecast in the market. The negative correlation is very strong, and a
regression of log(P/D) on the logged variance forecast yields an R2 = 0.72.32

Further evidence on this connection is given in the time series results in figure 14.
The top panel plots the P/D ratio for a 50 year sample of time, and the middle panel
displays the wealth weighted variance forecast. The wealth weighted variance clearly
moves closely with the P/D ratio. Large price falls cause a jump in the variance estimates,
and these generate a persistent increase in the market average variance forecast.33 Now
the issue of which variance forecast is being used becomes important. The lower panel in
the figure displays the variance forecasts for the highest and lowest gain levels across all
forecast rules. The low gain (or long half-life) forecast generates a very stable estimate of
the conditional variance. It is remarkably stable even after the occurrence of a large price
drop. On the other hand, the high gain forecast moves quickly with the new information

30 This hesitancy on the part of risk averse rational investors is in the spirit of noise trader models as in DeLong, Shleifer, Summers
& Waldman (1992).

31These regressions are run on the mean weekly return over 52 weeks as opposed to annual returns themselves. This is why the
parameter differs from those in table 3. Multiplying by 52 shows that they are indeed consistent with each other in magnitude.

32Obviously, this right hand side variable here is endogenous, so this regression should only be viewed as instructive about the
comovements.

33 A quick back of the envelope test is useful to understand the impact of this volatility change on prices. A rough representative
agent approximation to the pricing relation would give, P = ( x

γσ2 + 1
2γ )W. Ignoring the 2nd term in the sum as being relatively small

yields a direct proportionate connection between the price level and the variance for a given wealth level. An increase in σ2 by a factor
of 3 as shown in the figure could lead to a reduction in prices by the same factor which is a similar order of magnitude as shown in
the figure. This reduction would be larger if one correctly considered the decrease in wealth as well.
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coming from the price fall. The middle panel lies somewhere between these two. It also
reveals some evidence for a more persistent impact of volatility, as more of the lower gain
strategies pick up the increased volatility levels that are usually persistent. Evidence in
this figure is consistent with the portfolio strategy results given in figure 11. The low gain
strategies are not changing their risk assessments even after large price declines, and they
are therefore very aggressive in their portfolio weights, which other strategies are more
cautious about. Higher gain strategies perceived the increase in conditional variance, and
this moderates their response to their high conditional return forecasts. In other words,
they know it is a good time to invest in equity, but they are scared.

Why don’t agents chose what appears to be a more desirable variance forecast? This is
an interesting question which is addressed in figure 15. The top two panels in the figure
report the mean squared error (MSE) and mean absolute error (MAE) for the different gain
level variance forecasts evaluated over the last 50,000 weeks of the simulation. They are
normalized by the value from the forecast using the unconditional mean over the sample.
A value of 1 would correspond to getting the same prediction error as the unconditional
mean. The lowest gain level shows that it is very close to using the unconditional mean
squared return which should be expected. What is interesting is that the higher gain
forecasts all generate modest improvements in terms of forecast errors. For the highest
(lowest half-life) forecast there is an improvement of more than 10 percent for the the
MSE and MAE forecast measures. This is important since these are true out of sample
forecasts at fixed parameter values. They could have gone well above one in value, and
did not have to show an improvement. Also, this result is consistent with the results on
wealth distributions over forecasting rules as shown in figure 8. It is not a direct causal
path, but it is an indication of why these higher gain forecasting rules seem to be doing
well. They are generating an endogenous pattern in volatility which yields some amount
of predictability for higher gain learning forecasts over the more stable low gain forecasts,
causing these same forecasts to thrive in the population.

These forecast measures are not really relevant to how agents are actually selecting
rules based on expected utility estimates. The histogram in the lower left corner of figure
15 shows a snap shot of an expected utility estimate. These rate the overall value of all
forecasting rules to agents in certainty equivalent terms across the different volatility gain
levels. The figure shows relatively equal values, with some indication for higher utilities
for the high gain variance strategy. The dynamic here would be that these strategies
more accurately warn agents of the higher volatility periods, allowing them to back off
on equity positions during these periods. If this dynamic strategy is effective, then it

21



will be reflected in a higher risk adjusted return for this strategy, which appears to be the
case.34

These results make a strong case for the importance of high gain, short half-life learn-
ing rules. The fact that at least some fraction of wealth stays with these rules over time
would appear essential to building reasonable market dynamics. However, what about
the low gain, long half-life rules? Do they play any role, or are they superfluous in gener-
ating reasonable dynamics? Many of the distributions still show a large fraction of wealth
using these rules, so the question remains about their impact. To explore this, a reverse of
the first benchmark, low gain, experiment is performed. Agents with only high gain, or
short half-life rules are used. The set of rules is again concentrated on 5 different gain lev-
els, but instead of being distributed between 1 and 50 years, they are reduced to a range of
1-5 years only. Figure 16 displays a 100 year period of a run with these gain parameters.
The market still displays significant instability. However, the dynamics do not appear
reasonable for lining up with real data. There are quick bursts in the price level which
suddenly take off, and crash almost as quickly. After the sharp drop in prices, prices re-
turn relatively quickly to a central P/D level. Returns are punctuated by large tail events,
but prolonged periods of high volatility are not evident. The competing dynamics of
learning agents of all gain levels would appear essential to spread out some of the market
instability, making it less dramatic, and more persistent in all dimensions. This is a critical
requirement if one is interested in modeling deviations from fundamentals which are not
just large, but are persistent.

4 Conclusions and Implications

This model demonstrates that heterogeneous gain learning may generate reasonable long
range dynamics for stock prices. In particular, the model generates persistent swings in
prices and fundamentals, as well as replicating many other features of asset prices. More
importantly, it does so in a framework that uses a simple set of strategies representing
behaviors that are probably generic to most financial settings. Finally, when the details of
agent behavior are analyzed, they generate patterns consistent with individual objective
functions. In other words, they appear individually rational, relative to the environment
that their own strategies self generate.

34The results in this panel should be viewed with some care since they are a one period snapshot. They are probably subject to
extensive sampling variation which is not reported in the figure. A cautious interpretation of the figure suggests that utility based
models would view all rules equally. However, it does appear that the slightly higher value of the short gain rules is being transmitted
into real adjustments of agent wealth toward these strategies.
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The model is still highly stylized, and it would be premature to call this a definitive
model for financial markets. It therefore can only be viewed as a computational thought
experiment.35 For example, no attempt is made to calibrate the consumption series, or to
model real interest rates. These remain open challenges for the future. The model does
quantitatively capture swings in the price/dividend ratio. It does this through the mecha-
nism of the common volatility forecasts, and their endogenous structure across gain levels
in their variance forecasts. Obviously, this is the component that one should question in
terms of the results. As usual in heterogeneous agent models, questions should be asked
about whether these are the types of forecasts used by market participants. Would other
variance forecasts change the results? It seems plausible that a wide range of forecasting
models will give relatively similar results. One critical issue to consider in the future, is
whether the models should entertain some convergence to a long run mean level. The
exponential filter is consistent with a world with an unobserved state variable following
a random walk as in Muth (1960). This persistence in forecasts obviously contributes to
the generated large swings in P/D ratios. It is not clear that adding some kind of long
run mean reversion would change the situation, since the measured volatility in the sim-
ulation generates a lot of persistence, but this would be an interesting experiment.

Another learning issue that needs to be further explored is how the rules react to large
shocks. The market endogenously generates large returns from distributions which are
not normal. These have a dramatic impact as inputs into the learning models, and oc-
casionally lead to large swings in parameters which can last for some time. Would real
investors blindly feed these extreme values into their own learning algorithms, or would
some more complicated filtering algorithm be more appropriate? If the latter is the case, it
is still not clear which stylized modeling framework would be appropriate in this context.
However, this issue is another one for future consideration, both for learning models in
finance and in macro economics.36

This paper has made the case for greater consideration of heterogeneity in gain param-
eters in learning models. When these models are carefully constructed, they are capable
of producing price dynamics replicating most empirical financial market features. High
gain learners are a destabilizing force in the market as some agents put heavy weight on
the recent past in assessing risk and return. Low gain learners are also essential because
their longer term perspective is necessary to generate relatively persistent swings from
fundamental values. Finally, when one examines the internals of these models, the mi-

35The book by Miller & Page (2007) advocates stylized computational experiments which still may not completely capture reality,
but influence our intuition about the interactions and dynamics of heterogeneous agent worlds.

36Examples of early research exploring this topic are Benhabib & Dave (2011) and Hansen & Sargent (2008).
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cro level behavior appears sensible and consistent, and capable of generating the macro
features. The agents self generate a time series world in which their own behavior is rein-
forced, and a robust range of beliefs survive which continue to perpetuate these patterns.
The generated long swings in prices are large, persistent, and unpredictable. All of these
features make it difficult for learning agents to lock down on the strategies that would be
necessary to eliminate them.
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Table 1: Parameter Definitions
Parameter Value
dg 0.0126
σd 0.12
r f 0
γ 3.5
λ 0.0007
I 16000
J 4000
gj [1, 2.5, 7, 18, 50] years
gL 50 years
gu [1, 2.5, 7, 18, 50] years
L 5 percent/year
[αL, αH ] [0.05, 0.95]
σε 0.02
MPD 52 weeks
MAR 3
hj [0.025, 0.15]

The annual standard deviation of dividend growth is set to the level from real dividends in Shiller’s annual
long range data set. The growth rate of log dividends, 0.0126 corresponds to an expected percentage change
of Dg = 0.02 = dg + (1/2)σ2

d in annual dividends. This corresponds to the long range value of 0.021 in the
Shiller data.
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Table 2: Annual Statistics
Baseline Shiller Earnings Shiller Dividends

Mean(P/D) 15.29 15.37 26.79
Std (P/D) 4.24 5.97 13.90
Autocorrelation(1) 0.64 0.68 0.91
Mean(Log(Return)) 6.82 6.22
Std(Return) 0.25 0.17
Annual Sharpe 0.35 0.30

Baseline model uses a sample of 100,000 weeks or about 1900 years. The Shiller series are annual from 1871-
2009. P/D refers to the price dividend ratio for the model and the Shiller dividends column. The earnings
column uses the annual P/E ratio instead. All returns are real including dividends. The Sharpe ratio estimated
from the Shiller annual data uses the 1 year interest rates from that series.
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Table 3: Long Range Return Regressions

Simulation log(P/D) log(C/D) R2

All Gain (1 year) −0.41 0.19
(0.03)

All Gain (1 year) −0.47 0.15 0.20
(0.03) (0.05)

All Gain (5 year) −0.52 0.14
(0.09)

Small Gain (1 year) −0.01 0.00
(0.05)

Small Gain (1 year) −0.02 0.06 0.00
(0.05) (0.04)

Small Gain (5 year) −0.39 0.01
(0.25)

Dependent variables are 1 and 5 year log simulation returns. Simulation runs use 50, 000 weeks of data, or
approximately 1, 000 years of non overlapping data for regressions. All gain corresponds to runs with both
small and large forecast gain levels. Small gain corresponds to runs with only small gains (long memory)
forecasts.
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Figure 1: Low Gain Only: Long memory learning
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Figure 2: All Gain : Short and Long Memory

34



1860 1880 1900 1920 1940 1960 1980 2000 2020
0

50

P
/D

 S
&

P

0 20 40 60 80 100 120 140 160
0

50

D
ra

w
 1

0 20 40 60 80 100 120 140 160
0

50

D
ra

w
 2

0 20 40 60 80 100 120 140 160
0

50

D
ra

w
 3

Years

Figure 3: Price/dividend Ratios: S&P and Three Simulations: Panel 1 is estimated from the Shiller annual
data set and represents the real price dividend ratio for the S&P from 1872-2009. Panels 2-4 are random 140
year snapshops taken from a simulation run of 4, 000 years using all gain level learning. The Shiller series
goes to a high of near 90 around 2000.
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Figure 7: Wealth Across Forecast Gain Levels: The gain levels correspond to half-lives of [50, 18, 7, 2.5, 1]
years moving left to right.
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Figure 8: Wealth Across Variance Gain Levels: The gain levels correspond to half-lives of [50, 18, 7, 2.5, 1]
years moving left to right.
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Figure 9: Agent Wealth Across Utility Gain Levels: The gain levels correspond to half-lives of
[50, 18, 7, 2.5, 1] years moving left to right.
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Figure 10: Forecasts by Strategy Family
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Figure 11: Portfolio Holdings by Strategy Family
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Figure 12: Fundamental Strategies by Gain: The middle panel shows the equity fractions for the high and
low variance gain levels in the fundamental rule family. The lower panel shows the estimated log(P/D)
coefficient for the high and low gain parameters in the recursive least squares regression.
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45



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

P
/D

 r
at

io

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

V
ar

ia
nc

e 
by

 w
ea

lth

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

Years

V
ar

ia
nc

e 
by

 g
ai

n

 

 
High gain
Low gain

Figure 14: Variance Forecast and P/D Ratio Time Series: “Variance by wealth” is the wealth weighted
variance forecast. The lower panel shows the variance forecast averaged (equal weight) across all small
and large gain strategies.
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Figure 16: High Gain Only: Short memory learning: Simulation results for gain parameters in the range
[1-5] years only.
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